
2023-12-14

Beyond Human Data: Scaling Self-Training for
Problem-Solving with Language Models
Avi Singh1,*, John D Co-Reyes1,*, Rishabh Agarwal1,2,*,

Ankesh Anand1, Piyush Patil1, Peter J. Liu1, James Harrison1, Jaehoon Lee1, Kelvin Xu1,

Aaron Parisi1, Abhishek Kumar1, Alex Alemi1, Alex Rizkowsky1, Azade Nova1, Ben Adlam1, Bernd Bohnet1,
Gamaleldin Elsayed1, Hanie Sedghi1, Igor Mordatch1, Isabelle Simpson1, Izzeddin Gur1, Jasper Snoek1,
Jeffrey Pennington1, Jiri Hron1, Kathleen Kenealy1, Kevin Swersky1, Kshiteej Mahajan1, Laura Culp1, Lechao
Xiao1, Maxwell L Bileschi1, Noah Constant1, Roman Novak1, Rosanne Liu1, Tris Warkentin1, Yundi Qian1,

Ethan Dyer1, Behnam Neyshabur1, Jascha Sohl-Dickstein1, Noah Fiedel1

*Contributed equally, 1Google DeepMind, 2 Mila

Fine-tuning language models (LMs) on human-generated data remains a prevalent practice. However,
the performance of such models is often limited by the quantity and diversity of high-quality human data.
In this paper, we explore whether we can go beyond human data on tasks where we have access to scalar
feedback, for example, on math problems where one can verify correctness. To do so, we investigate a
simple self-training method based on expectation-maximization, which we call ReST𝐸𝑀 , where we (1)
generate samples from the model and filter them using binary feedback, (2) fine-tune the model on
these samples, and (3) repeat this process a few times. Testing on advanced MATH reasoning and APPS
coding benchmarks using PaLM-2 models, we find that ReST𝐸𝑀 scales favorably with model size and
significantly surpasses fine-tuning only on human data. Overall, our findings suggest self-training with
feedback can substantially reduce dependence on human-generated data.

Keywords: RL from external feedback, EM for RL, Language, LLMs, Reasoning, Coding, Self-Improvement

1. Introduction

Large Language Models (LLMs) are revolutionizing the landscape of deep learning, showcasing
remarkable capabilities in generating human-quality text and tackling diverse language tasks (Google
et al., 2023; OpenAI, 2023). While supervised fine-tuning (SFT) on human-collected data further
boosts their performance on tasks of interest, acquiring high-quality human data poses a significant
bottleneck. This is particularly demanding for complex problem-solving tasks, requiring significant
resources and expert knowledge. To address this hurdle, model-generated synthetic data emerges as
a promising alternative, offering scalability and cost-effectiveness, provided its quality can be ensured.
While LLMs hold the potential to self-evaluate generated data, this paper explores a simpler setting
where an external, scalar feedback signal serves as a quality indicator for each generated sample.

To investigate training on model-generated data, we consider a simple yet powerful self-training
approach for language models that requires only two capabilities: 1) generating samples from the
model and 2) evaluating these samples with a scoring mechanism. To ensure clarity and consistency,
we adopt the terminology of Reinforced Self-Training (Gulcehre et al., 2023) and call this approach
ReST𝐸𝑀 . We show that ReST𝐸𝑀 can be viewed as applying expectation-maximization for reinforcement
learning (Dayan and Hinton, 1997; Peters and Schaal, 2007), which we present formally in Section 3.
Specifically, ReST𝐸𝑀 alternates between the expectation and maximization steps:

1. Generate (E-step): The language model generates multiple output samples for each input

Corresponding author(s): singhavi@google.com, jcoreyes@google.com, rishabhagarwal@google.com
© 2023 Google DeepMind. All rights reserved

ar
X

iv
:2

31
2.

06
58

5v
2

 [
cs

.L
G

]
 1

2
D

ec
 2

02
3

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

15

20

25

30

35

40

4-
sh

ot
 Te

st
 A

cc
ur

ac
y

(%
)

GPT-4

LLaMA-2 70B

WizardMath 70B

MetaMath 70B

Inflection-1

Llemma 34B

Llemma 7B

Mistral 7B (maj@4)

Minerva 62B

Minerva 540B

PaLM 2-S

PaLM 2-L

Grok-0 (33B)

PaLM 2-L (ReSTEM)

PaLM 2-S (ReSTEM)

Reasoning: MATH

30

40

50

60

0-
sh

ot
 A

cc
ur

ac
y

(%
)

PaLM 2-S*

PaLM 2-L

GPT-4

GPT-3.5 (ChatGPT)

WizardCoder 15B

LLaMA-2 70B

Code LLaMA 34B

Code Llama Python 34B

Inflection-1

Mistral 7B

Grok-0 (33B)

PaLM 2-L (ReSTEM)

PaLM 2-S* (ReSTEM)

Code Generation: HumanEval

Figure 1 | Self-training with ReST𝐸𝑀 substantially improves test performance of PaLM 2 models on
two challenging benchmarks: MATH and HumanEval. Results for other models are shown for general
progress on these tasks and are typically not comparable due to difference in model scales. GPT-4
results are taken from Bubeck et al. (2023).

context. Then, we filter these samples using a binary reward to collect the training dataset.
2. Improve (M-step): The original language model is supervised fine-tuned on the training
dataset from the previous Generate step. The fine-tuned model is then used in the next
Generate step.
ReST𝐸𝑀 , with its various adaptations, has demonstrated success in enhancing language models

across diverse domains, including machine translation (Gulcehre et al., 2023; Norouzi et al., 2016),
semantic parsing (Agarwal et al., 2019), preference alignment (Dong et al., 2023), and elementary
reasoning (Yuan et al., 2023; Zelikman et al., 2022). However, prior works primarily applied ReST𝐸𝑀
to relatively small language models (up to 7B parameters), with limited scalability observed for
larger models (Yuan et al., 2023). Complementing these efforts, our work aims to investigate the
effectiveness and scalability of model-generated synthetic data compared to human-generated data
in two challenging, less explored domains: competition-level mathematical problem-solving (MATH)
(Hendrycks et al., 2021b) and code generation (APPS) (Hendrycks et al., 2021a).

Our empirical findings reveal significant advancements in both mathematical reasoning and code
generation capabilities when applying ReST𝐸𝑀 to PaLM 2 models of varying scales (Figure 1). Notably,
models fine-tuned on model-generated synthetic data exhibit remarkably larger performance gains
compared to those trained on human-written data (Figure 2, 3). Interestingly, exceeding a couple
of iterations of ReST𝐸𝑀 leads to diminishing improvement, indicating potential overfitting on small
amount of training problems (Figure 4). Additionally, models fine-tuned using ReST𝐸𝑀 improve
pass@k as well as majority voting performance. Furthermore, these fine-tuned models demonstrate
enhanced performance on related but held-out benchmarks, including math problems (GSM8K and
Hungarian HS finals), coding (HumanEval), and Big-Bench Hard tasks. We also perform ablation
studies to investigate the effect of number of model-generated solutions, training problems, and
iterations for ReST𝐸𝑀 fine-tuning. Overall, our findings suggest self-training with feedback as an
promising approach to reduce dependence on human data.

2. Preliminaries

An autoregressive language model produces an output sequence 𝒚 = (𝑦1, 𝑦2,𝑦𝑇) given a context (or
source input) 𝒙 = (𝑥1, 𝑥2, ...𝑥𝐿), where the tokens 𝑥𝑙, 𝑦𝑡 belong to a fixed vocabulary. Auto-regressive
generation involves predicting tokens one at a time, based on the previously generated tokens.
Assuming that the language model is parameterized by 𝜃, the conditional probability distribution of

2

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

generating a sequence 𝒚 given 𝒙 is

𝑝𝜃(𝒚 | 𝒙) =
𝑇∏
𝑡=1

𝑝𝜃(𝑦𝑡 | 𝒚<𝑡, 𝒙),

with the convention 𝒚1:0 = ∅ and 𝒚1:𝑡−1 = (𝑦1, 𝑦2,𝑦𝑡−1). For ease of notation, we define 𝑝(𝑦𝑡 |𝑥) :=
𝑝(𝑦𝑡 |𝑦<𝑡, 𝑥). The probability of predicting 𝑡𝑡ℎ token 𝑦𝑡, 𝑝(𝑦𝑡 |𝑥), is determined using a softmax with
temperature 𝛾: 𝑝(𝑦𝑡 |𝑥) = exp(𝑧𝑡/𝛾)∑𝑀

𝑖=1 exp(𝑧𝑖/𝛾)
, where 𝑧𝑡 is the logit score for the token 𝑦𝑡. Higher values of 𝛾

introduces more randomness, while a lower value makes the output more deterministic by favoring
the most probable words.

Given a dataset D of inputs 𝒙 and human-generated outputs 𝒚, supervised fine-tuning (SFT)
trains the policy by minimizing the negative log likelihood loss:

LSFT(𝜃) = −𝔼(𝒙,𝒚)∼D

[
𝑇∑︁
𝑡=1
log 𝑝𝜃(𝑦𝑡 | 𝒚1:𝑡−1, 𝒙)

]
. (1)

We also assume access to a deterministic sequence-level (or terminal) reward 𝑟(𝒙, 𝒚). Then, the
reinforcement learning (RL) objective corresponds to:

LRL(𝜃) = 𝔼𝒙∼D
[
𝔼𝒚∼𝑝𝜃 (𝒚 |𝒙) [𝑟(𝒙, 𝒚)]

]
.

Optimizing LRL loss directly using online RL methods, such as policy gradients, requires updating
and sampling from the policy numerous times during training. However, the computational cost of
fine-tuning on a continual flow of new samples becomes a limitation of online methods, especially
when the sizes of the policy network grow to tens or hundreds of billion parameters. We discuss an
alternative to such online RL approaches in the next section.

3. Expectation-Maximization for Reinforced Self-Training

Expectation-Maximization (EM) for RL We first describe the EM-based framework for RL with
language models, building upon the prior work by Dayan and Hinton (1997). Let’s define a binary
optimality variable O, such that 𝑝(𝑂 = 1|𝒙, 𝒚) ∝ 𝑓 (𝑟(𝒙, 𝒚)), for some non-decreasing function 𝑓 : ℝ →
ℝ+. We want to maximize the log-likelihood of observing 𝑂 = 1 (obtaining high reward):

log 𝑝(𝑂 = 1|𝒙) := log
∑︁
𝒚

𝑝𝜃(𝒚 |𝒙)𝑝(𝑂 = 1 | 𝒙, 𝒚).

However, the sum over all possible sequences 𝒚 is typically intractable. Instead of maximizing
log 𝑝(𝑂 = 1; 𝒙), one can consider maximizing its ELBO 𝐿(𝑝𝜃, 𝑞) with respect to parameters 𝜃 and
variational distribution 𝑞(𝑦 |𝑥). Specifically,

log 𝑝(𝑂 = 1 | 𝒙) = log𝔼𝑞(𝒚 |𝒙)
[
𝑝(𝑂 = 1 | 𝒙, 𝒚)𝑝𝜃(𝒚 | 𝒙)

𝑞(𝒚 | 𝒙)

]
≥ 𝔼𝑞(𝒚 |𝒙)

[
log

𝑝(𝑂 = 1 | 𝒙, 𝒚)𝑝𝜃(𝒚 |𝒙)
𝑞(𝒚 | 𝒙)

]
(Jensen’s inequality)

= 𝔼𝑞(𝒚 |𝒙) [log 𝑝(𝑂 = 1 | 𝒙, 𝒚)] − KL [𝑞(𝒚 | 𝒙) | |𝑝𝜃(𝒚 | 𝒙)]
=: 𝐿(𝑝𝜃, 𝑞) (2)

The EM algorithm (Dempster et al., 1977) for Equation 2 alternates between an E-step and M-step:
at iteration 𝑡, denote the language model parameter to be 𝜃𝑡 and the variational distribution to be 𝑞𝑡.

3

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

Algorithm 1: ReST (Expectation-Maximization). Given a initial policy (e.g., pre-trained
LM), ReST𝐸𝑀 iteratively applies Generate and Improve steps to update the policy.
Input: D: Training dataset, D𝑣𝑎𝑙: Validation dataset, L(𝒙, 𝒚; 𝜃): loss, 𝑟(𝒙, 𝒚): Non-negative

reward function, 𝐼: number of iterations, 𝑁: number of samples per context
for 𝑖 = 1 to 𝐼 do

// Generate (E-step)
Generate dataset D𝑖 by sampling: D𝑖 = { (𝒙 𝑗, 𝒚 𝑗) |𝑁

𝑗=1 s.t. 𝒙 𝑗 ∼ D, 𝒚 𝑗 ∼ 𝑝𝜃(𝒚 |𝒙 𝑗) }
Annotate D𝑖 with the reward 𝑟(𝒙, 𝒚).

// Improve (M-step)
while reward improves on D𝑣𝑎𝑙 do
Optimise 𝜃 to maximize objective: 𝐽 (𝜃) = 𝔼(𝒙,𝒚)∼D𝑖

[𝑟(𝒙, 𝒚) log 𝑝𝜃(𝒚 |𝒙)]
end

end
Output: Policy 𝑝𝜃

• E-step: 𝑞𝑡+1 = argmax𝑞 𝐿(𝑝𝜃𝑡 , 𝑞). Since 𝐿(𝑝𝜃𝑡 , 𝑞) can be written as 𝐾𝐿[𝑞(𝒚 |𝒙) | |𝑞∗(𝒚 | |𝒙)], 𝑞𝑡+1(𝒚 |
𝒙) ∝ 𝑞∗(𝒚 | 𝒙) := 𝑝(𝑂 = 1|𝒙, 𝒚)𝑝𝜃𝑡 (𝒚 | 𝒙). Thus, this step is equivalent to weighting the output
samples from conditional language model distribution based on their likelihood of obtaining
high rewards.

• M-step: 𝜃𝑡+1 := argmax𝜃 𝐿(𝑝𝜃, 𝑞𝑡+1) = argmax𝜃
∑

𝒚 𝑞
𝑡+1(𝒚 | 𝒙) log 𝑝𝜃(𝒚 | 𝒙). As such, this step

corresponds to maximizing a reward-weighted negative log-likelihood loss.

Alternating between above steps ensures a monotonic improvement in the ELBO: 𝐿(𝑝𝜃𝑡+1 , 𝑞𝑡+1) ≥
𝐿(𝑝𝜃𝑡 , 𝑞𝑡+1) ≥ 𝐿(𝑝𝜃𝑡 , 𝑞𝑡).

EM with non-negative rewards. If the rewards are non-negative and 𝑓 is set to the identity
function, then 𝑝(𝑂 = 1|𝒙, 𝒚) ∝ 𝑟(𝒙, 𝒚) which implies 𝑞𝑡+1(𝒚 | 𝒙) ∝ 𝑟(𝒙, 𝒚)𝑝𝜃𝑡 (𝒚 | 𝒙). In this scenario,
the updated policy parameters 𝜃𝑡+1 resulting from the M-step at iteration 𝑡 are given by:

𝜃𝑡+1 := argmax
𝜃

𝔼𝑥∼D
[
𝔼𝒚∼𝑝𝑡

𝜃
(𝒚 |𝒙) [𝑟(𝒙, 𝒚) log 𝑝𝜃(𝒚 | 𝒙)]

]
. (3)

Comparing the above equation with the LRL objective reveals the key distinction between standard
RL and EM-based RL: how output data is sampled. Standard RL continuously updates the policy
and uses this latest policy to collect data. In contrast, EM-based RL employs a fixed sampling policy
from the previous iteration, decoupling data collection from policy optimization. This decoupling in
EM-based approaches enables easier scaling to large-scale policy models.

ReST𝐸𝑀 Motivated by the EM framework, we now discuss a simplified version of ReST approach by
Gulcehre et al. (2023). This approach, which we call ReST𝐸𝑀 for clarity, decouples data collection (E-
step) and policy optimization (M-step) in a typical RL pipeline. Algorithm 1 outlines the ReST𝐸𝑀
algorithm with multiple iterations, where each iteration corresponds to one Generate and Improve
step. We describe these steps in detail below.

• Generate (E-step): In this step, we generate a dataset D𝑖 by sampling many output sequences
from the current policy 𝑝𝜃: D𝑖 = { (𝒙 𝑗, 𝒚 𝑗) |𝑁

𝑗=1 s.t. 𝒙 𝑗 ∼ D, 𝒚 𝑗 ∼ 𝑝𝜃(𝒚 |𝒙 𝑗) }. Here, the inputs are
resampled from the original dataset 𝒙 𝑗 ∼ D. The output sequences in D𝑖 are then scored with a
binary reward function 𝑟(𝒙, 𝒚). Unlike Gulcehre et al. (2023), we refrain from augmenting D𝑖

with human-generated outputs as such data may not always be optimal for learning or it might

4

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

not be easily available. In our experiments, we condition the language model using a few-shot
prompt with programs for code generation and step-by-step solutions for math problems.

• Improve (M-step): In the 𝑖𝑡ℎ iteration, we use the new dataset D𝑖 from Generate step to
fine-tune the policy 𝑝𝜃. Contrary to Gulcehre et al. (2023), we always fine tune the base
pretrained language model to minimize task-specific over-fitting and minimize drift from the
base model. For fine-tuning, we minimize the reward-weighted negative log-likelihood loss
𝐽 (𝜃) = 𝔼(𝒙,𝒚)∼D𝑖

[𝑟(𝒙, 𝒚) log 𝑝𝜃(𝒚 |𝒙)]. Once the policy is improved, a new dataset of better
quality samples can be created once again.

Remark. Our experiments focus on problem-solving settings with binary rewards (either 0 or 1),
unlike the bounded real-valued rewards assumed by Gulcehre et al. (2023). Specifically, for each
Generate step, Gulcehre et al. (2023) perform multiple Improve steps, where each Improve step
can be viewed as an M-step with the function 𝑓 (𝑟(𝒙, 𝒚)) = 𝑟(𝒙, 𝒚) > 𝜏, where 𝜏 ∈ ℝ+ increases in
successive M-steps. However, with binary rewards, any value of 𝜏 ∈ (0, 1) corresponds to the identical
Improve steps.

4. Related work

Several prior methods can be instantiated using the expectation-maximization framework in Section 3.
We discuss methods and their relation to ReST𝐸𝑀 in this section.

• Expert Iteration (ExiT) (Anthony et al., 2017) alternates between two steps: expert improve-
ment and policy distillation. During the expert improvement step (E-step), we combine a base
policy with a search procedure to generate samples from a better policy, called the expert policy.
Then, in the policy distillation step (M-step), we use these expert samples to train the base
policy in a supervised way, effectively improving it to match the expert policy. While ExiT used
monte-carlo tree-search, we simply use temperature sampling for collecting samples from the
expert policy in ReST. That said, improving the E-step in ReST using the ExIT framework via
search and planning procedures with language models would be interesting for future work. For
example, Huang et al. (2022) implement a single iteration of ReST𝐸𝑀 on simple math reasoning
problems. However, unlike our setup, they do not assume access to a correctness reward and
instead employ majority-voting (Wang et al., 2023) as a search procedure within the E-step.

• Self-Taught Reasoner (STaR) (Zelikman et al., 2022) employed greedy decoding instead of
temperature sampling for the E-step in ReST𝐸𝑀 . Additionally, STaR proposed rationalization as
an alternative to temperature sampling, where the language model is provided with the correct
answer as part of the input to generate correct solutions for difficult problems. However, in our
preliminary experiments, rationalization leads to substantial increase in false positive solutions
that output the correct answer but their reasoning is incorrect.

• Rejection Sampling Fine-tuning (RFT) Yuan et al. (2023) improves reasoning performance
on GSM8K and corresponds to running a single generate (E-step) and improve (M-step) of
ReST𝐸𝑀 . While RFT demonstrated limited performance improvements on GSM8Kwith increasing
language model capacity, ReST𝐸𝑀 achieves larger gains on more challenging APPS and MATH
benchmarks when scaling PaLM 2 model capacity. Moreover, we observe that using multiple
iterations of ReST𝐸𝑀 result in larger performance gains.

• Iterative Maximum Likelihood (IML) optimizes a policy using a reward-weighted log-likelihood
objective on self-collected data. IML has been shown to perform well with relatively small-scale

5

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

language models for semantic parsing (Agarwal et al., 2019; Liang et al., 2016), machine
translation (Wu et al., 2016) and simple math reasoning (Ni et al., 2022). Each E-step and
M-step in IML is performed over a mini-batch of training examples instead of the entire training
dataset, as done in ReST𝐸𝑀 . In IML, the learned policy can significantly diverge from the initial
pretrained model, which can manifest as task-specific overfitting, where the model performs
well on the target task but loses its ability to generalize to other tasks or domains. Additionally,
the tightly coupled nature of data collection and policy optimization in IML leads to high
computational cost with large LMs, making it significantly more expensive than ReST𝐸𝑀 .

• Reward weighted regression (RWR) (Peters and Schaal, 2007) corresponds to EM where we
set 𝑝(𝑂 = 1|𝒙, 𝒚) ∝ exp (𝑟(𝒙, 𝒚)) in Section 3. RWR can be easily has been previously applied to
robotic control, as it can be easily applied to non-binary reward functions. Norouzi et al. (2016)
build on RWR to propose a general variant of IML for machine translation.

• Reward ranked fine-tuning (RAFT) (Dong et al., 2023) can be interpreted as alternating
between E-step and M-step over mini-batches, where E-step uses the the output sample with
maximum reward for each input context. For binary reward functions, RAFT is analogous to
IML and as such, can be viewed as an instantiation of ReST𝐸𝑀 .

5. Experiments and analysis

The goal of our experiments is to answer the following questions:

1. How effective is ReST𝐸𝑀 compared to fine-tuning on human-generated data?
2. How many iterations are needed for optimal performance? How quickly does ReST𝐸𝑀 leads to
overfitting on training set?

3. How does ReST𝐸𝑀 affect pass@k and majority voting performance?
4. If we fine-tune using model-generated data on a specific task, do we see positive transfer
to related tasks? Is there any performance degradation compared to the base model when
evaluating our fine-tuned models on a broad suite of tasks?

5. How much input data do we need to get most of the performance gains from ReST𝐸𝑀? Is one
iteration of ReST𝐸𝑀 sufficient?

Training Datasets. We evaluate ReST𝐸𝑀 primarily on mathematical problem solving using the
Hendrycks’ MATH dataset (Hendrycks et al., 2021b) and code generation using the APPS (Introductory)
dataset (Hendrycks et al., 2021a). MATH and APPS (Introductory) contain 7500 and 2342 training
problems respectively. We select these tasks because the model outputs can be automatically evaluated
as correct or incorrect, perfectly suited for ReST𝐸𝑀 . Both these datasets offer binary rewards: on
MATH, model-generated answers can be easily verified for correctness using the ground-truth answer,
while on APPS, test cases determine whether the generated code is correct.

Models. We use the PaLM 2 models (Google et al., 2023) with public APIs on Google Cloud for
experiments, including PaLM 2-S (Bison), PaLM 2-S* (Codey), and PaLM 2-L (Unicorn).

Evaluation. We report generalization performance using the test splits of the MATH and APPS
(Introductory) datasets. For measuring transfer performance, we look at GSM8K (Cobbe et al., 2021),
Hungarian HS finals (Paster, 2023), and HumanEval (Chen et al., 2021) datasets. We also evaluate
our models using the Big-Bench Hard (Suzgun et al., 2022) benchmark to evaluate general capabilities.
All evaluations follow the settings from Google et al. (2023), unless specified otherwise.

6

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

0 1 2 3
Num iterations

20

25

30

35

40
Pa

ss
@

1
Te

st
 A

cc
ur

ac
y

(%
) Hendrycks MATH

Palm-2-S Palm-2-L Palm-2-L-SFT Palm-2-S-SFT

0 1 2 3
Num iterations

60

70

80

Pa
ss

@
1

Te
st

 A
cc

ur
ac

y
(%

) Transfer to GSM8K

Figure 2 | ReST𝐸𝑀 for math problem-solving. Test performance on MATH and GSM8K (transfer) for
PaLM 2-S* and PaLM 2-L as a function of ReST𝐸𝑀 iterations. We also report performance of models
fine-tuned via SFT on human-generated data as a baseline. Iteration 0 corresponds to pre-trained
model performance. Following Google et al. (2023), we use greedy decoding for evaluation.

Implementation Details. During each iteration of ReST𝐸𝑀 , we generated a fixed number of
solutions per problem for the E-step: 32 for the MATH dataset and 64 for the APPS dataset. For
generating solutions, we sample from the language model using top-K sampling with K=40 and
temperature of 0.7. However, directly using all these model-generated solutions can lead to an
imbalanced dataset, as we will have a lot more correct solutions for the easier problems. To mitigate
this, we introduced a cut-off threshold for the maximum number of solutions per problem, a design
choice also used by Zelikman et al. (2022), included in the fine-tuning dataset: 10 for both MATH
and APPS. This approach ensures diversity in the training data and safeguards against overfitting
on easier problems. For fine-tuning, we use the few-shot prompt (and the question) as input to the
model, and use the model-generated solutions as targets. We only apply the next token prediction
loss (Equation 1) on the targets.

5.1. ReST𝐸𝑀 on MATH and APPS

Figures 2 and 3 show the performance of ReST𝐸𝑀 when trained on the MATH and APPS datasets,
respectively. We see that MATH benefits from performing multiple iterations of ReST𝐸𝑀 , both in terms
of performance on the MATH test set, as well as transfer to GSM8K. On the other hand, we see that
most of the gains for APPS come from the first iteration, and the performing more iterations leads to
a regression in performance on both APPS and HumanEval.

Interestingly, Figures 2 and 3 demonstrate that fine-tuning on model-generated solutions substan-
tially outperforms using human-written solutions, especially for the PaLM 2-L model. This aligns with
findings of Yuan et al. (2023) and recent work on distilling LLMs using model-generated data (Agarwal
et al., 2023; Gu et al., 2023). However, unlike Yuan et al. (2023), who observed diminishing returns
from model-generated data on GSM8K when scaling model capacity, our results suggest an opposite
trend: ReST𝐸𝑀 leads to larger performance gains as model capacity increases. On the MATH dataset,
the test accuracy improvement with ReST𝐸𝑀 is 5.94% for PaLM 2-S compared to 6.34% for the larger
PaLM 2-L model. Similarly, on the APPS dataset, improvements are 5.6% for PaLM 2-S* compared to
6.4% for PaLM 2-L. This is in addition to the fact that the larger models start with a much stronger
initial performance, and improvements on these benchmarks generally get harder as the baseline
performance goes up.

7

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

0 1 2
Num iterations

18

20

22

24

26

Pa
ss

@
1

Te
st

 A
cc

ur
ac

y
(%

) APPS (Introductory)

Palm-2-S* Palm-2-L Palm-2-L-SFT Palm-2-S*-SFT

0 1 2
Num iterations

40

45

50

55

Pa
ss

@
1

Te
st

 A
cc

ur
ac

y
(%

) Transfer to HumanEval

Figure 3 | ReST𝐸𝑀 for code-generation. Test performance on APPS (introductory) and Hu-
manEval (transfer) for PaLM 2-S* and PaLM 2-L as a function of ReST𝐸𝑀 iterations.

0 1 2 3
Num iterations

35

40

45

50

55

60

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

)

Hendrycks MATH

Palm-2-L (Train) Palm-2-L (Test)

0 1 2
Num iterations

20

30

40

50
Pa

ss
@

1
Pe

rfo
rm

an
ce

 (%
)

APPS (Introductory)

Palm-2-S* Train Palm-2-S* Test

Figure 4 | Train-test performance gap on (left) MATH with PaLM-2-L, and (right) APPS with PaLM-
2-S*, as a function of ReST𝐸𝑀 iterations. We report pass@1 training performance sampling with
temperature = 0.7 while use greedy decoding for test performance.

Train-test performance gap. Figure 4 shows that while training set performance increases linearly
with the number of ReST𝐸𝑀 iterations, test set performance does not. For MATH, test performance
improvements are small after the first iteration, and for APPS, we actually observe a regression in
performance in the second iteration. We suspect that the regression in performance is likely due to
overfitting. Since the APPS dataset is about a third of the size of the MATH dataset, it suffers more
from this problem.

5.2. Impact on Pass@K and Majority-Voting Performance

To investigate the impact of fine-tuning with ReST𝐸𝑀 on the diversity of the final model’s generated
outputs, we evaluate pass@k (Chen et al., 2021) and majority voting (Wang et al., 2023) performance
of the fine-tuned PaLM 2-L model relative to the base model.

Pass@K measures the probability that at least one of the top k-generated solution for a problem
is correct, that is, outputs the correct answer for math problems or passes all the unit tests for code
generation. Figure 5 shows the performance of the Palm-2-L model on the pass@K metric. We see
that ReST𝐸𝑀 model obtained after fine-tuning is stronger for all values of K, with the performance
gap typically being the highest for K=1.

8

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

0 20 40 60
Num samples (K)

40%

60%

80%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y
(%

)
HumanEval

PaLM-2-L
PaLM-2-L (ReST)

2 4 6 8 10
Num samples (K)

10%

20%

30%

40%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y
(%

)

APPS (Introductory)
PaLM-2-L
PaLM-2-L (ReST)

0 20 40 60
Num samples (K)

20%

30%

40%

50%

60%

70%

80%

Pa
ss

 @
 K

 Te
st

 A
cc

ur
ac

y
(%

)

Hendrycks MATH

Palm-2-L
Palm-2-L (ReST)

Figure 5 | Pass@K results for PaLM-2-L pretrained model as well as model fine-tuned with ReST𝐸𝑀 .
For a fixed number of samples K, fine-tuning with ReST𝐸𝑀 substantially improves Pass@K performance.
We set temperature to 1.0 and use nucleus sampling with 𝑝 = 0.95.

Majority voting first samples a diverse set of reasoning paths instead of only taking the greedy
one, and then selects the most consistent answer by marginalizing out the sampled reasoning paths.
For Hendrycks MATH, it is possible to use majority voting to maximize Pass@1 performance, and we
find that when using 64 samples per question, the PaLM 2-L fine-tuned with ReST𝐸𝑀 obtains a test
accuracy of 48.82, while the base model gets 44.02.

5.3. Ablation Studies

Impact of multiple iterations Our results show that multiple iterations can sometimes lead to
over-fitting on the train set (Figure 4). This raises the question of whether multiple iterations are
really necessary. Is it better to collect a larger dataset and perform just a single iteration of ReST𝐸𝑀?
To investigate this, we collect a dataset with the base PaLM-2-L model on Hendrycks MATH that is
3× as many solutions per problem as used in a single iteration of ReST𝐸𝑀 for the E-step. Fine-tuning
with this dataset results in pass@1 performance of 40.3%, which is lower than the 41% in second
and 41.9% in third iteration, as shown in Figure 2. These results indicate that performing multiple
iterations of ReST𝐸𝑀 leads to higher performance compared a single iteration with 3x the data.

Impact of dataset size Since one of the main ingredients needed for ReST𝐸𝑀 is a dataset of input
contexts (e.g., questions for MATH), we are interested in evaluating the effect of number of input
problems. The results from our dataset ablations using the PaLM-2-L model on Hendrycks MATH,
Figure 6 (left), show that utilizing just 1000 MATH questions results in significant gains, implying that
the method is very efficient in the number of prompts needed. However, we noted a slight decrease
in performance when using 4,000 questions compared to 2,000, indicating potential variance in
the fine-tuning process. Ideally, conducting this experiment multiple times would help quantify this
variance, but this is prohibitively resource-intensive. Overall, we find that ReST𝐸𝑀 is quite sample
efficient and performance gains from ReST𝐸𝑀 improve as we increase the dataset size.

Comparing model-generated data with human data A key strength of ReST𝐸𝑀 is its ability to
generate multiple correct solutions for each problem. This provides valuable additional training data
compared to human-generated data, which typically offers only a single solution per problem. While
this makes a comparison in Figures 2 and 3 not entirely fair, it also highlights the potential of ReST𝐸𝑀
to boost performance with diverse and correct solutions.

In order to enable an apples-to-apples comparison, we conduct the following study: we select all
Hendrycks MATH questions for which we have at least one correct model-generated solution, resulting

9

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

0 1000 2000 4000 7000
Number of questions

34
35
36
37
38
39
40

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

) Hendrycks MATH (Test)

SFT (7K) SFT (5K) ReST* (5K) ReST (5K)
Method (Num questions)

34

36

38

40

42

Pa
ss

@
1

Pe
rfo

rm
an

ce
 (%

) Hendrycks MATH (Test)

Figure 6 | Left. Performance for a single iteration of ReST𝐸𝑀 as a function of dataset size (number of
questions) on MATH. Right. Comparing ReST𝐸𝑀 with SFT on MATH. SFT refers to fine-tuning on
human data, while ReST* refers to a version of ReST𝐸𝑀 with one iteration that uses only one correct
sample per problem. Here, ReST denotes ReST𝐸𝑀 with 3 iterations. For each method, we denote the
number of questions in parenthesis.

in about 5K questions. For these 5K questions, we run two fine-tuning experiments: SFT(5K) where
we fine-tune on human-written solutions (one per question), and ReST∗(5K) where we fine-tune on
model-generated solutions (also one per question, selected at random). The results in Figure 6 (right),
show that ReST𝐸𝑀 outperforms fine-tuning on human data even in this much more restricted setting.
Furthermore, the efficacy of ReST(5K) over ReST∗(5K) highlights the additional gain in performance
that we can obtain by spending more compute on sampling a large number of solutions and performing
multiple iterations of ReST𝐸𝑀 .

5.4. Impact on Reasoning capabilities

Boolean Expressio
ns

Causal Judgement

Date Understa
nding

Disambiguation QA

Dyck Languages

Formal Fallacies

Geometric
Shapes

Hyperbaton

Movie Recommendation

Multi-s
tep Arith

metic [
Two]
Navigate

Object C
ounting

Penguins in
 a Table

Reasoning about Colored Objects

Ruin Names

Salient Tra
nslation Error Detectio

n
Snarks

Sports U
ndersta

nding

Temporal Sequences

Web of Lies

Word Sortin
g

Logical Deductio
n (avg)

Tracking Shuffled Objects
(avg)

Average (23 Tasks)

Big-Bench Hard (BBH) Task

30

40

50

60

70

80

90

100

Fe
w-

sh
ot

 P
er

fo
rm

an
ce

 w
ith

 C
oT

PaLM 2-L PaLM 2-L (MATH) PaLM 2-L (APPS)

CoT Direct
Prompt Type

60

65

70

75

80

Av
er

ag
e

BB
H

Pe
rfo

rm
an

ce

PaLM 2-L
PaLM 2-L (APPS)
PaLM 2-L (MATH)

Figure 7 | Comparing the ReST𝐸𝑀 models to the base model on the Big-Bench Hard suite of tasks.

General capabilities. BIG-Bench provides a suite of over 200 tasks that can be used to probe
LLMs’ performance across a range of fields and capabilities. BIG-Bench Hard (BBH) (Suzgun et al.,
2022) is a subset of 23 BIG-Bench tasks where the previous generation of LLMs, such as Codex and
PaLM 540B, performed below the average human rater. We follow the experimental setup of Google
et al. (2023) and evaluate using both few-shot and chain-of-thought prompting.

10

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

Figure 7 shows the performance of ReST𝐸𝑀-finetuned models, and compares them against the
base PaLM-2 model. We see no major degradation on any of the tasks on the BBH suite. Further, we
find that the model fine-tuned on Hendrycks MATH significantly outperforms the base model on this
suite when using chain-of-thought prompting, and the model fine-tuned on APPS also shows slight
performance gains. When using direct prompting, all three models perform similarly.

Problem-solving. To stress test the math problem-solving capabilities on a held-out “real-world"
evaluation set, we evaluate our model on the 2023 Hungarian high school finals exam in mathematics,
akin to Grok. We follow the evaluation protocol from Paster (2023). Specifically, we evaluate the
PaLM 2-L model, fine-tuned with ReST𝐸𝑀 on Hendrycks MATH, using the 1-shot prompt from Grok,
sample solutions using temperature 0.1, and manually grade the outputs using the rubric provided by
the examiners. The results from evaluation are shown in Figure 8. We find that our model performs
well on this exam, surpassing the performance of all existing models except GPT-4.

20 30 40 50 60 70
Hungarian HS Finals Exam Score (%)

30

40

50

60

70

80

90

GS
M

8K
 S

co
re

 (%
)

MetaMath 7B

MetaMath Mistral 7B OpenChat 3.5

Code Llama 34B

Llemma 34B
GPT-3.5 Turbo

GPT-4

Grok-0 (33B)

Grok-1

Qwen 7B

Claude 2

Mistral 7B

MAmmoTH 7B

PaLM 2-L (ReSTEM)

Exam Score vs GSM8K Performance of Various Models

Figure 8 | Transfer results on Hungarian HS Finals Exam. Results for models other than PaLM-2-L
finetuned with ReST𝐸𝑀 are taken from Paster (2023). Several models specialized for mathematics
perform well on the widely-used GSM8K benchmark but perform poorly on the Hungarian exam. In
contrast, PaLM 2-L model fine-tuned with ReST𝐸𝑀 performs well on both these benchmarks.

6. Discussion

In this paper, we propose training on model-generated data combined with a reward function,
via ReST𝐸𝑀 , for improving the performance of LLMs on problem-solving tasks. Furthermore, we
demonstrate that ReST𝐸𝑀 is theoretically grounded in the application of expectation-maximization
to RL. We evaluate ReST𝐸𝑀 on mathematical problem solving and code generation, and show that
ReST𝐸𝑀 offers significant performance gains at a relatively low computational cost, especially when
compared to the cost of pre-training. Our experiments also show that ReST𝐸𝑀 does not lead to
regression on other tasks. We conduct a number of ablations to better understand the strengths and
weaknesses of this method, and find that it is very data-efficient, but also requires some vigilance to
avoid over-fitting.

There are a number of limitations associated with ReST𝐸𝑀 . First, this method requires a moderately-
sized training set of problems or prompts, which would need to be collected (from humans) for any
new task of interest. Second, ReST𝐸𝑀 also requires access to a manually-designed or learned reward
function, ideally one that can be computed automatically. Finally, while ReST𝐸𝑀 allows significant
performance improvements in pass@1 performance, it may not quite close the gap to pass@K

11

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

performance for the same task (with a sufficiently large K). Future research in self-improvement in
language models should focus on automating manual parts of the pipeline (likely through language
models as well), and explore algorithmic improvements that reduce the gap to pass@K performance.

Acknowledgements

We would like to thank Tom Le Paine for providing feedback to an early draft. We also acknowledge
Feryal Behbahani, Aleksandra Faust, Doina Precup, Olivier Bachem, and Slav Petrov for helpful
discussions.

Author Contributions

Avi, JD and Rishabh jointly led the project. Avi was responsible for training infrastructure, ablations
and experiments on MATH, JD led the experiments on APPS, and Rishabh was responsible for the
paper writing and evaluations.

Ankesh, Piyush, Ethan, and Behnam observed preliminary findings about efficacy of model-
generated data on MATH for Minerva models and motivated this research. Piyush also helped Avi in
setting up infrastructure. Peter, James, Jaeheoon and Kelvin took part in project discussions. Jascha
and Noah sponsored and advised the project. All other authors provided feedback on this work.

References

R. Agarwal, C. Liang, D. Schuurmans, and M. Norouzi. Learning to generalize from sparse and
underspecified rewards. In International conference on machine learning, pages 130–140. PMLR,
2019.

R. Agarwal, N. Vieillard, P. Stanczyk, S. Ramos, M. Geist, and O. Bachem. Gkd: Generalized knowledge
distillation for auto-regressive sequence models. arXiv preprint arXiv:2306.13649, 2023.

T. Anthony, Z. Tian, and D. Barber. Thinking fast and slow with deep learning and tree search.
Advances in neural information processing systems, 30, 2017.

S. Bubeck, V. Chandrasekaran, R. Eldan, J. Gehrke, E. Horvitz, E. Kamar, P. Lee, Y. T. Lee, Y. Li, S. M.
Lundberg, H. Nori, H. Palangi, M. T. Ribeiro, and Y. Zhang. Sparks of artificial general intelligence:
Early experiments with GPT-4. CoRR, abs/2303.12712, 2023. doi: 10.48550/ARXIV.2303.12712.
URL https://doi.org/10.48550/arXiv.2303.12712.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. de Oliveira Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M. Petrov, H. Khlaaf, G. Sastry, P. Mishkin,
B. Chan, S. Gray, N. Ryder, M. Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P.
Such, D. Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss, A. Nichol,
A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W. Saunders, C. Hesse, A. N. Carr,
J. Leike, J. Achiam, V. Misra, E. Morikawa, A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer,
P. Welinder, B. McGrew, D. Amodei, S. McCandlish, I. Sutskever, and W. Zaremba. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton,
R. Nakano, C. Hesse, and J. Schulman. Training verifiers to solve math word problems. arXiv
preprint arXiv:2110.14168, 2021.

12

https://doi.org/10.48550/arXiv.2303.12712

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

P. Dayan and G. E. Hinton. Using expectation-maximization for reinforcement learning. Neural
Computation, 9(2):271–278, 1997.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em
algorithm. Journal of the royal statistical society: series B (methodological), 39(1):1–22, 1977.

H. Dong, W. Xiong, D. Goyal, R. Pan, S. Diao, J. Zhang, K. Shum, and T. Zhang. Raft: Reward ranked
finetuning for generative foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Google, R. Anil, A. M. Dai, O. Firat, M. Johnson, D. Lepikhin, A. Passos, S. Shakeri, E. Taropa, P. Bailey,
Z. Chen, et al. Palm 2 technical report. arXiv preprint arXiv:2305.10403, 2023.

Y. Gu, L. Dong, F. Wei, and M. Huang. Knowledge distillation of large language models. arXiv preprint
arXiv:2306.08543, 2023.

C. Gulcehre, T. L. Paine, S. Srinivasan, K. Konyushkova, L. Weerts, A. Sharma, A. Siddhant, A. Ahern,
M. Wang, C. Gu, et al. Reinforced self-training (rest) for language modeling. arXiv preprint
arXiv:2308.08998, 2023.

D. Hendrycks, S. Basart, S. Kadavath, M. Mazeika, A. Arora, E. Guo, C. Burns, S. Puranik, H. He,
D. Song, et al. Measuring coding challenge competence with apps. arXiv preprint arXiv:2105.09938,
2021a.

D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt. Measuring
mathematical problem solving with the math dataset. arXiv preprint arXiv:2103.03874, 2021b.

J. Huang, S. S. Gu, L. Hou, Y. Wu, X. Wang, H. Yu, and J. Han. Large language models can self-improve.
CoRR, abs/2210.11610, 2022. doi: 10.48550/ARXIV.2210.11610. URL https://doi.org/10.
48550/arXiv.2210.11610.

C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. Neural symbolic machines: Learning semantic
parsers on freebase with weak supervision. arXiv preprint arXiv:1611.00020, 2016.

A. Ni, J. P. Inala, C. Wang, A. Polozov, C. Meek, D. Radev, and J. Gao. Learning math reasoning from
self-sampled correct and partially-correct solutions. In The Eleventh International Conference on
Learning Representations, 2022.

M. Norouzi, S. Bengio, N. Jaitly, M. Schuster, Y. Wu, D. Schuurmans, et al. Reward augmented
maximum likelihood for neural structured prediction. Advances In Neural Information Processing
Systems, 29, 2016.

OpenAI. Gpt-4 technical report, 2023.

K. Paster. Testing language models on a held-out high school national finals exam. https://
huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam, 2023.

J. Peters and S. Schaal. Reinforcement learning by reward-weighted regression for operational space
control. In Proceedings of the 24th international conference on Machine learning, pages 745–750,
2007.

M. Suzgun, N. Scales, N. Schärli, S. Gehrmann, Y. Tay, H. W. Chung, A. Chowdhery, Q. V. Le, E. H. Chi,
D. Zhou, et al. Challenging big-bench tasks and whether chain-of-thought can solve them. arXiv
preprint arXiv:2210.09261, 2022.

13

https://doi.org/10.48550/arXiv.2210.11610
https://doi.org/10.48550/arXiv.2210.11610
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam
https://huggingface.co/datasets/keirp/hungarian_national_hs_finals_exam

Beyond Human Data: Scaling Self-Training for Problem-Solving with Language Models

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou. Self-
consistency improves chain of thought reasoning in language models. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net,
2023. URL https://openreview.net/pdf?id=1PL1NIMMrw.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey,
et al. Google’s neural machine translation system: Bridging the gap between human and machine
translation. arXiv preprint arXiv:1609.08144, 2016.

Z. Yuan, H. Yuan, C. Li, G. Dong, C. Tan, and C. Zhou. Scaling relationship on learning mathematical
reasoning with large language models. arXiv preprint arXiv:2308.01825, 2023.

E. Zelikman, Y. Wu, J. Mu, and N. Goodman. Star: Bootstrapping reasoning with reasoning. Advances
in Neural Information Processing Systems, 35:15476–15488, 2022.

14

https://openreview.net/pdf?id=1PL1NIMMrw

	Introduction
	Preliminaries
	Expectation-Maximization for Reinforced Self-Training
	Related work
	Experiments and analysis
	ReSTEM on MATH and APPS
	Impact on Pass@K and Majority-Voting Performance
	Ablation Studies
	Impact on Reasoning capabilities

	Discussion

