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Abstract

We propose a simple, tractable lower bound on the mutual information contained
in the joint generative density of any latent variable generative model: the GILBO
(Generative Information Lower BOund). It offers a data-independent measure
of the complexity of the learned latent variable description, giving the log of
the effective description length. It is well-defined for both VAEs and GANs. We
compute the GILBO for 800 GANs and VAEs each trained on four datasets (MNIST,
FashionMNIST, CIFAR-10 and CelebA) and discuss the results.

1 Introduction

GANs (Goodfellow et al., 2014) and VAEs (Kingma & Welling, 2014) are the most popular latent
variable generative models because of their relative ease of training and high expressivity. However
quantitative comparisons across different algorithms and architectures remains a challenge. VAEs
are generally measured using the ELBO, which measures their fit to data. Many metrics have been
proposed for GANs, including the INCEPTION score (Gao et al., 2017), the FID score (Heusel et al.,
2017), independent Wasserstein critics (Danihelka et al., 2017), birthday paradox testing (Arora &
Zhang, 2017), and using Annealed Importance Sampling to evaluate log-likelihoods (Wu et al., 2017),
among others.

Instead of focusing on metrics tied to the data distribution, we believe a useful additional independent
metric worth consideration is the complexity of the trained generative model. Such a metric would
help answer questions related to overfitting and memorization, and may also correlate well with
sample quality. To work with both GANs and VAEs our metric should not require a tractable joint
density p(x, z). To address these desiderata, we propose the GILBO.

2 GILBO: Generative Information Lower BOund

A symmetric, non-negative, reparameterization independent measure of the information shared
between two random variables is given by the mutual information:

I(X;Z) =

∫∫
dx dz p(x, z) log

p(x, z)

p(x)p(z)
=

∫
dz p(z)

∫
dx p(x|z) log p(z|x)

p(z)
≥ 0. (1)

I(X;Z) measures how much information (in nats) is learned about one variable given the other.
As such it is a measure of the complexity of the generative model. It can be interpreted (when
converted to bits) as the reduction in the number of yes-no questions needed to guess X = x if you
observe Z = z and know p(x), or vice-versa. It gives the log of the effective description length of the
generative model. This is roughly the log of the number of distinct sample pairs (Tishby & Zaslavsky,
2015). I(X;Z) is well-defined even for continuous distributions. This contrasts with the continuous
entropy H(X) of the marginal distribution, which is not reparameterization independent (Marsh,
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2013). I(X;Z) is intractable due to the presence of p(x) =
∫
dz p(z)p(x|z), but we can derive a

tractable variational lower bound (Agakov, 2006):

I(X;Z) =

∫∫
dx dz p(x, z) log

p(x, z)

p(x)p(z)
(2)

=

∫∫
dx dz p(x, z) log

p(z|x)
p(z)

(3)

≥
∫∫

dx dz p(x, z) log p(z|x)−
∫
dz p(z) log p(z)−KL[p(z|x)||e(z|x)] (4)

=

∫
dz p(z)

∫
dx p(x|z) log e(z|x)

p(z)
= Ep(x,z)

[
log

e(z|x)
p(z)

]
≡ GILBO ≤ I(X;Z) (5)

We call this bound the GILBO for Generative Information Lower BOund. It requires learning a
tractable variational approximation to the intractable posterior p(z|x) = p(x, z)/p(x), termed e(z|x)
since it acts as an encoder mapping from data to a prediction of its associated latent variables.2 As a
variational approximation, e(z|x) depends on some parameters, θ, which we elide in the notation.

The encoder e(z|x) performs a regression for the inverse of the GAN or VAE generative model,
approximating the latents that gave rise to an observed sample. This encoder should be a tractable
distribution, and must respect the domain of the latent variables, but does not need to be reparameteri-
zable as no sampling from e(z|x) is needed during training. We suggest the use of (−1, 1) remapped
Beta distributions in the case of uniform latents, and Gaussians in the case of Gaussian latents. In
either case, training the variational encoder consists of simply generating pairs of (x, z) from the
trained generative model and maximizing the likelihood of the encoder to generate the observed z,
conditioned on its paired x, divided by the likelihood of the observed z under the generative model’s
prior, p(z). For the GANs in this study, the prior was a fixed uniform distribution, so the log p(z)
term contributes a constant offset to the variational encoder’s likelihood. Optimizing the GILBO for
the parameters of the encoder gives a lower bound on the true generative mutual information in the
GAN or VAE. Any failure to converge or for the approximate encoder to match the true distribution
does not invalidate the bound, it simply makes the bound looser.

The GILBO contrasts with the representational mutual information of VAEs defined by the data and
encoder, which motivates VAE objectives (Alemi et al., 2017). For VAEs, both lower and upper
variational bounds can be defined on the representational joint distribution (p(x)e(z|x)). These
have demonstrated their utility for cross-model comparisons. However, they require a tractable
posterior, preventing their use with most GANs. The GILBO provides a theoretically-justified and
dataset-independent metric that allows direct comparison of VAEs and GANs.

The GILBO is entirely independent of the true data, being purely a function of the generative
joint distribution. This makes it distinct from other proposed metrics like estimated marginal log
likelihoods (often reported for VAEs and very expensive to estimate for GANs) (Wu et al., 2017)3,
an independent Wasserstein critic (Danihelka et al., 2017), or the common INCEPTION (Gao et al.,
2017) and FID (Heusel et al., 2017) scores which attempt to measure how well the generated samples
match the observed true data samples. Being independent of data, the GILBO does not directly
measure sample quality, but extreme values (either low or high) correlate with poor sample quality,
as demonstrated in the experiments below.

Similarly, in Im et al. (2018), the authors propose using various GAN training objectives to quantita-
tively measure the performance of GANs on their own generated data. Interestingly, they find that
evaluating GANs on the same metric they were trained on gives paradoxically weaker performance –
an LS-GAN appears to perform worse than a Wasserstein GAN when evaluated with the least-squares
metric, for example, even though the LS-GAN otherwise outperforms the WGAN. If this result holds
in general, it would indicate that using the GILBO during training might result in less-interpretable
evaluation GILBOs. We do not investigate this hypothesis here.

2Note that a new e(z|x) is trained for both GANs and VAEs. VAEs do not use their own e(z|x), which would
also give a valid lower bound. In this work, we train a new e(z|x) for both to treat both model classes uniformly.
We don’t know if using a new e(z|x) or the original would tend to result in a tighter bound.

3Note that Wu et al. (2017) is complementary to our work, providing both upper and lower bounds on the
log-likelihood. It is our opinion that their estimates should also become standard practice when measuring GANs
and VAEs.
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(a) FID (b) GILBO (c) GILBO vs FID

Figure 1: (a) Recreation of Figure 5 (left) from Lucic et al. (2017) showing the distribution of FID
scores for each model on MNIST. Points are jittered to give a sense of density. (b) The distribution of
GILBO scores. (c) FID vs GILBO.

Although the GILBO doesn’t directly reference the dataset, the dataset provides useful signposts.
First is at logC, the number of distinguishable classes in the data. If the GILBO is lower than that,
the model has almost certainly failed to learn a reasonable model of the data. Another is at logN ,
the number of training points. A GILBO near this value may indicate that the model has largely
memorized the training set, or that the model’s capacity happens to be constrained near the size of
the training set. At the other end is the entropy of the data itself (H(X)) taken either from a rough
estimate, or from the best achieved data log likelihood of any known generative model on the data.
Any reasonable generative model should have a GILBO no higher than this value.

Unlike other metrics, GILBO does not monotonically map to quality of the generated output. Both
extremes indicate failures. A vanishing GILBO denotes a generative model with vanishing complexity,
either due to independence of the latents and samples, or a collapse to a small number of possible
outputs. A diverging GILBO suggests over-sensitivity to the latent variables.

In this work, we focus on variational approximations to the generative information. However,
other means of estimating the GILBO are also valid. In Section 4.3 we explore a computationally-
expensive method to find a very tight bound. Other possibilities exist as well, including the recently
proposed Mutual Information Neural Estimation (Belghazi et al., 2018) and Contrastive Predictive
Coding (Oord et al., 2018). We do not explore these possibilities here, but any valid estimator of the
mutual information can be used for the same purpose.

3 Experiments

We computed the GILBO for each of the 700 GANs and 100 VAEs tested in Lucic et al. (2017) on the
MNIST, FashionMNIST, CIFAR and CelebA datasets in their wide range hyperparameter search. This
allowed us to compare FID scores and GILBO scores for a large set of different GAN objectives on the
same architecture. For our encoder network, we duplicated the discriminator, but adjusted the final
output to be a linear layer predicting the 64× 2 = 128 parameters defining a (−1, 1) remapped Beta
distribution (or Gaussian in the case of the VAE) over the latent space. We used a Beta since all of
the GANs were trained with a (−1, 1) 64-dimensional uniform distribution. The parameters of the
encoder were optimized for up to 500k steps with ADAM (Kingma & Ba, 2015) using a scheduled
multiplicative learning rate decay. We used the same batch size (64) as in the original training.
Training time for estimating GILBO is comparable to doing FID evaluations (a few minutes) on the
small datasets (MNIST, FashionMNIST, CIFAR), or over 10 minutes for larger datasets and models
(CelebA).

In Figure 1 we show the distributions of FID and GILBO scores for all 800 models as well as their
scatter plot for MNIST. We can immediately see that each of the GAN objectives collapse to GILBO
∼ 0 for some hyperparameter settings, but none of the VAEs do. In Figure 2 we show generated
samples from all of the models, split into relevant regions. A GILBO near zero signals a failure of the
model to make any use of its latent space (Figure 2a).
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(a) GILBO ≤ logC (b) logC < GILBO ≤ logN

(c) logN < GILBO ≤ 2 logN (d) 2 logN < GILBO ≤ 80.2(∼ H(X))

(e) 80.2(∼ H(X)) < GILBO (f) Legend

Figure 2: Samples from all models sorted by increasing GILBO in raster order and broken up into
representative ranges. The background colors correspond to the model family (Figure 2f). Note
that all of the VAE samples are in (d), indicating that the VAEs achieved a non-trivial amount of
complexity. Also note that most of the GANs in (d) have poor sample quality, further underscoring the
apparent difficulty these GANs have maintaining high visual quality without indications of training
set memorization.

The best performing models by FID all sit at a GILBO ∼ 11 nats. An MNIST model that simply
memorized the training set and partitioned the latent space into 50,000 unique outputs would have
a GILBO of log 50,000 = 10.8 nats, so the cluster around 11 nats is suspicious. Since mutual
information is invariant to any invertible transformation, a model that partitioned the latent space
into 50,000 bins, associated each with a training point and then performed some random elastic
transformation but with a magnitude low enough to not turn one training point into another would
still have a generative mutual information of 10.8 nats. Larger elastic transformations that could
confuse one training point for another would only act to lower the generative information. Among a
large set of hyperparameters and across 7 different GAN objectives, we notice a conspicuous increase
in FID score as GILBO moves away from ∼ 11 nats to either side. This demonstrates the failure of
these GANs to achieve a meaningful range of complexities while maintaining visual quality. Most
striking is the distinct separation in GILBOs between GANs and VAEs. These GANs learn less complex
joint densities than a vanilla VAE on MNIST at the same FID score.

Figures 3 to 5 show the same plots as in Figure 1 but for the FashionMNIST, CIFAR-10 and CelebA
datasets respectively. The best performing models as measured by FID on FashionMNIST continue
to have GILBOs near logN . However, on the more complex CIFAR-10 and CelebA datasets we see
nontrivial variation in the complexities of the trained GANs with competitive FID. On these more
complex datasets, the visual performance (e.g. Figure 8) of the models leaves much to be desired.
We speculate that the models’ inability to acheive high visual quality is due to insufficient model
capacity for the dataset.
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(a) FID (b) GILBO (c) GILBO vs FID

Figure 3: A recreation of Figure 1 for the Fashion MNIST dataset.

(a) FID (b) GILBO (c) GILBO vs FID

Figure 4: A recreation of Figure 1 for the CIFAR dataset.

4 Discussion

4.1 Reproducibility

While the GILBO is a valid lower bound regardless of the accuracy of the learned encoder, its utility
as a metric naturally requires it to be comparable across models. The first worry is whether it is
reproducible in its values. To address this, in Figure 6 we show the result of 128 different training
runs to independently compute the GILBO for three models on CelebA. In each case the error in the
measurement was below 2% of the mean GILBO and much smaller in variation than the variations
between models, suggesting comparisons between models are valid if we use the same encoder
architecture (e(z|x)) for each.

(a) FID (b) GILBO (c) GILBO vs FID

Figure 5: A recreation of Figure 1 for the CelebA dataset.
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(a) GILBO ∼ 41.1± 0.8 nats (b) GILBO ∼ 69.5± 0.9 nats (c) GILBO ∼ 104± 1 nats

Figure 6: Measure of the reproducibility of the GILBO for the three models visualized in Figure 8.
For each model we independently measured the GILBO 128 times.

(a) GILBO ∼ 41 nats (b) GILBO ∼ 70 nats (c) GILBO ∼ 104 nats

Figure 7: Simulation-based calibration (Talts et al., 2018) of the variational encoder for the same
three models as in Figure 6. Shown are histograms of the ranking statistic for how many of 128
samples from the encoder are less than the true z used to generate the figure, aggregated over the 64
dimensional latent vector for 1270 batches of 64 samples each. Shown in red is the 99% confidence
interval for a uniform distribution, the expected result if e(z|x) was the true p(z|x). The systematic
∩-shape denotes overdispersion in the approximation.

4.2 Tightness

Another concern would be whether the learned variational encoder was a good match to the true
posterior of the generative model (e(z|x) ∼ p(z|x)). Perhaps the model with a measured GILBO of
41 nats simply had a harder to capture p(z|x) than the GILBO ∼ 104 nat model. Even if the values
were reproducible between runs, maybe there is a systemic bias in the approximation that differs
between different models.

To test this, we used the Simulation-Based Calibration (SBC) technique of Talts et al. (2018). If
one were to implement a cycle, wherein a single draw from the prior z′ ∼ p(z) is decoded into an
image x′ ∼ p(x|z′) and then inverted back to its corresponding latent zi ∼ p(z|x′), the rank statistic∑

i I [zi < z′] should be uniformly distributed. Replacing the true p(z|x′) with the approximate
e(z|x) gives a visual test for the accuracy of the approximation. Figure 7 shows a histogram of the
rank statistic for 128 draws from e(z|x) for each of 1270 batches of 64 elements each drawn from
the 64 dimensional prior p(z) for the same three GANs as in Figure 6. The red line denotes the 99%
confidence interval for the corresponding uniform distribution. All three GANs show a systematic
∩-shaped distribution denoting overdispersion in e(z|x) relative to the true p(z|x). This is to be
expected from a variational approximation, but importantly the degree of mismatch seems to correlate
with the scores, not anticorrelate. It is likely that the 41 nat GILBO is a more accurate lower bound
than the 103 nat GILBO. This further reinforces the utility of the GILBO for cross-model comparisons.

4.3 Precision of the GILBO

While comparisons between models seem well-motivated, the SBC results in Section 4.2 highlight
some mismatch in the variational approximation. How well can we trust the absolute numbers
computed by the GILBO? While they are guaranteed to be valid lower bounds, how tight are those
bounds?
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To answer these questions, note that the GILBO is a valid lower bound even if we learn separate
per-instance variational encoders. Here we replicate the results of Lipton & Tripathi (2017) and
attempt to learn the precise z that gave rise to an image by minimizing the L2 distance between the
produced image and the target (|x− g(z)|2). We can then define a distribution centered on z and
adjust the magnitude of the variance to get the best GILBO possible. In other words, by minimizing
the L2 distance between an image x sampled from the generative model and some other x′ sampled
from the same model, we can directly recover some z′ equivalent to the z that generated x. We can
then do a simple optimization to find the variance that maximizes the GILBO, allowing us to compute
a very tight GILBO in a very computationally-expensive manner.

Doing this procedure on the same three models as in Figures 6 and 7 gives (87, 111, 155) nats
respectfully for the (41, 70, 104) GILBO models, when trained for 150k steps to minimize the L2

distance. These approximations are also valid lower bounds, and demonstrate that our amortized
GILBO calculations above might be off by as much as a factor of 2 in their values from the true
generative information, but again highlights that the comparisons between different models appear to
be real. Also note that these per-image bounds are finite. We discuss the finiteness of the generative
information in more detail in Section 4.6.

Naturally, learning a single parametric amortized variational encoder is much less computationally
expensive than doing an independent optimization for each image, and still seems to allow for
comparative measurements. However, we caution against directly comparing GILBO scores from
different encoder architectures or optimization procedures. Fair comparison between models requires
holding the encoder architecture and training procedure fixed.

4.4 Consistency

The GILBO offers a signal distinct from data-based metrics like FID. In Figure 8, we visually
demonstrate the nature of the retained information for the same three models as above in Figures 6
and 7. All three checkpoints for CelebA have the same FID score of 49, making them each competitive
amongst the GANs studied; however, they have GILBO values that span a range of 63 nats (91 bits),
which indicates a massive difference in model complexity. In each figure, the left-most column shows
a set of independent generated samples from the GAN. Each of these generated images are then sent
through the variational encoder e(z|x) from which 15 independent samples of the corresponding z
are drawn. These latent codes are then sent back through the GAN’s generator to form the remaining
15 columns.

The images in Figure 8 show the type of information that is retained in the mapping from image to
latent and back to image space. On the right in Figure 8c with a GILBO of 104 nats, practically all of
the human-perceptible information is retained by doing this cycle. In contrast, on the left in Figure 8a
with a GILBO of only 41 nats, there is a good degree of variation in the synthesized images, although
they generally retain the overall gross attributes of the faces. In the middle, at 70 nats, the variation in
the synthesized images is small, but noticeable, such as the sunglasses that appear and disappear 6
rows from the top.

4.5 Overfitting of the GILBO Encoder

Since the GILBO is trained on generated samples, the dataset is limited only by the number of unique
samples the generative model can produce. Consequently, it should not be possible for the encoder,
e(z|x), to overfit to the training data. Regardless, when we actually evaluate the GILBO, it is always
on newly generated data.

Likewise, given that the GILBO is trained on the “true” generative model p(z)p(x|z), we do not
expect regularization to be necessary. The encoders we trained are unregularized. However, we
note that any regularization procedure on the encoder could be thought of as a modification of the
variational family used in the variational approximation.

The same argument is true about architectural choices. We used a convolutional encoder, as we expect
it to be a good match with the deconvolutional generative models under study, but the GILBO would
still be valid if we used an MLP or any other architecture. The computed GILBO may be more or
less tight depending on such choices, though – the architectural choices for the encoder are a form of
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(a) GILBO ∼ 41 nats (b) GILBO ∼ 70 nats (c) GILBO ∼ 104 nats

Figure 8: Visual demonstration of consistency. The left-most column of each image shows a sampled
image from the GAN. The next 15 columns show images generated from 15 independent samples of
the latent code suggested for the left-most image by the trained encoder used in estimating the GILBO.
All three of these GANs had an FID of 49 on CelebA, but have qualitatively different behavior.

inductive bias and should be made in a problem-dependent manner just like any other architectural
choice.

4.6 Finiteness of the Generative Information

The generative mutual information is only infinite if the generator network is not only deterministic,
but is also invertible. Deterministic many-to-one functions can have finite mutual informations
between their inputs and outputs. Take for instance the following: p(z) = U [−1, 1], the prior being
uniform from -1 to 1, and a generator x = G(z) = sign(z) being the sign function (which is C∞
almost everywhere), for which p(x|z) = δ(x− sign(z)) the conditional distribution of x given z is
the delta function concentrated on the sign of z.

p(x, z) = p(x|z)p(z) = 1

2
δ(x−sign(z)) p(z) =

∫ 1

−1
dx p(x, z) =

1

2
δ(z−1)+ 1

2
δ(z+1) (6)

I(X;Z) =

∫
dx dz p(x, z) log

p(x, z)

p(x)p(z)
(7)

=

∫ 1

−1
dx

∫ 1

−1
dz

1

2
δ(x− sign(z)) log

δ(x− sign(z))
1
2δ(z − 1) + 1

2δ(z + 1)
(8)

=

[
1

2
log 2

]
z=−1

+

[
1

2
log 2

]
z=1

= log 2 = 1bit (9)

In other words, the deterministic function x = sign(z) induces a mutual information of 1 bit between
X and Z. This makes sense when interpreting the mutual information as the reduction in the number
of yes-no questions needed to specify the value. It takes an infinite number of yes-no questions to
precisely determine a real number in the range [−1, 1], but if we observe the sign of the value, it takes
one fewer question (while still being infinite) to determine.

Even if we take Z to be a continuous real-valued random variable on the range [−1, 1], if we consider
a function x = float(z) which casts that number to a float, for a 32-bit float on the range [−1, 1]
the mutual information that results is I(X;Z) = 26 bits (we verified this numerically). In any
chain Z → float(Z) → X by the data processing inequality, the mutual information I(X;Z) is
limited by I(Z; float(Z)) = 26 bits (per dimension). Given that we train neural networks with
limited precision arithmetic, this ensures that there is always some finite mutual information in the
representations, since our random variables are actually discrete, albeit discretized on a very fine grid.
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5 Conclusion

We’ve defined a new metric for evaluating generative models, the GILBO, and measured its value on
over 3200 models. We’ve investigated and discussed strengths and potential limitations of the metric.
We’ve observed that GILBO gives us different information than is currently available in sample-quality
based metrics like FID, both signifying a qualitative difference in the performance of most GANs on
MNIST versus richer datasets, as well as being able to distinguish between GANs with qualitatively
different latent representations even if they have the same FID score.

On simple datasets, in an information-theoretic sense we cannot distinguish what GANs with the best
FIDs are doing from models that are limited to making some local deformations of the training set.
On more complicated datasets, GANs show a wider array of complexities in their trained generative
models. These complexities cannot be discerned by existing sample-quality based metrics, but would
have important implications for any use of the trained generative models for auxiliary tasks, such as
compression or representation learning.

A truly invertible continuous map from the latent space to the image space would have a divergent
mutual information. Since GANs are implemented as a feed forward neural network, the fact that we
can measure finite and distinct values for the GILBO for different architectures suggest not only are
they fundamentally not perfectly invertible, but the degree of invertibility is an interesting signal of
the complexity of the learned generative model. Given that GANs are implemented as deterministic
feed forward maps, they naturally want to live at high generative mutual information.

Humans seem to extract only roughly a dozen bits (∼ 8 nats) from natural images into long term
memory (Landauer, 1986). This calls into question the utility of the usual qualitative visual compar-
isons of highly complex generative models. We might also be interested in trying to train models
that learn much more compressed representations. VAEs can naturally target a wide range of mutual
informations (Alemi et al., 2017). GANs are harder to steer. One approach to make GANs steerable
is to modify the GAN objective and specifically designate a subset of the full latent space as the
informative subspace, as in Chen et al. (2016), where the maximum complexity can be controlled
for by limiting the dimensionality of a discrete categorical latent. The remaining stochasticity in
the latent can be used for novelty in the conditional generations. Alternatively one could imagine
adding the GILBO as an auxiliary objective to ordinary GAN training, though as a lower bound, it
may not prove useful for helping to keep the generative information low. Regardless, we believe it
is important to consider the complexity in information-theoretic terms of the generative models we
train, and the GILBO offers a relatively cheap comparative measure.

We believe using GILBO for further comparisons across architectures, datasets, and GAN and VAE
variants will illuminate the strengths and weaknesses of each. The GILBO should be measured and
reported when evaluating any latent variable model. To that end, our implementation is available at
https://github.com/google/compare_gan.
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