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Abstract

We present a framework to understand GAN training as alternating density ratio
estimation, and approximate divergence minimization. This provides an inter-
pretation for the mismatched GAN generator and discriminator objectives often
used in practice, and explains the problem of poor sample diversity. Further, we
derive a family of generator objectives that target arbitrary f-divergences without
minimizing a lower bound, and use them to train generative image models that
target either improved sample quality or greater sample diversity.

1 Introduction

Generative adversarial networks (GANs) have become a popular method for fitting latent-variable
directed generative models to complex datasets [2 10} [13}16]. While these models provide compelling
visual samples, they are notoriously unstable and difficult to train and evaluate. Many recent
papers have focused on new architectures and regularization techniques for improved stability and
performance 13|11} 4], but the objectives they optimize are fundamentally the same as the objectives
in the original proposal [2].

The visual quality of samples from generative models trained with GANs often exceeds those of
their variationally-trained counterparts [5,[12]. This is often credited to a difference in the divergence
between the data and model distribution that each technique optimizes [15]. GAN theory shows
that an idealized formulation optimizes Jensen-Shannon divergence, while VAEs optimize a lower
bound on log-likelihood, corresponding to a lower bound on the KL divergence. Recent work has
generalized the GAN theory to target reverse KL [[14] and additional f-divergences (including KL,
reverse KL, and JS), allowing GANSs to target a diverse set of behaviors [9].

However, these new theoretical advances fail to provide a justification for the GAN objectives that are
used in practice. In particular, the generator objective used in practice is different from the one that is
theoretically justified [2,9]. This raises the question as to whether the theory used to motivate GANs
applies to these modified objectives, and how the use of mismatched generator and discriminator
objectives influences the behavior of GANs in practice.

Here we present a new interpretation of GANSs as alternating between steps of density ratio estimation,
and divergence minimization. This leads to a new understanding of the GAN generator objective that
is used in practice as targeting a mode-seeking divergence that resembles reverse KL, thus providing
an explanation for the mode dropping seen in practice. Furthermore, we introduce a set of new
objectives for training the generator of a GAN that can trade off between sample quality and sample
diversity, and show their effectiveness on CIFAR-10.
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2 Theory

2.1 Background

Given samples from a data density, © ~ g(x), we would like to learn a generative model with density
p that matches the data density ¢q. Often the models we are interested in have intractable likelihoods,
so that we can sample z efficiently but cannot evaluate its likelihood. In the GAN framework [2],
the intractable likelihood is bypassed by instead training a discriminator to classify between samples
from the data and samples from the model. Given this discriminator, the parameters of the generative
model are updated to increase the tendency of the discriminator to mis-classify samples from the
model as samples from the data. This iterative process pushes the model density towards the data
density without ever explicitly computing the likelihood of a sample. More formally, the GAN
training process is typically motivated as solving a minimax optimization problem:

minimize max (Egng [log d(x)] + Epnp [log (1 — d(z))]) (1)
p

where p is the generative model distribution, d is the discriminator, and ¢ is the data distribution.

Fixing p, the optimal discriminator is d*(z) = % [2]. Thus if the inner maximization over
the discriminator is performed to completion for each step of p, the GAN objective is equivalent to

minimizing:

minimize <Ez~q {log q(x)qf;(m)} + Eqnp [log (1 - W)D = 21S(q|lp) — log4

This has led to the understanding that GANs minimize the Jensen-Shannon divergence between
the data density and the model density, and is thought to underlie the difference in sample quality
between GANs and VAEs [15]. However, this is not the objective that is used in practice, and we will
see below that this alters the analysis.

Recently, [9] proposed an extension to GANs to target divergences other than Jensen-Shannon. They
generalize the set of divergences a GAN can target to the family of f-divergences, where:

Dy (qllp) = /dwp(w)f (qm) 3)

p(x)

and f(u) : RT — R is a convex function with f(1) = 0. The key result they leverage from [§] is
that any f-divergence can be lower-bounded by

Dy(qllp) = sup (Bazng [T'(2)] = Eonp [f*(T'(2))]) )
TET

where f* is the Fenchel conjugatg”| of f, and T is the variational function also known as the
discriminator in the GAN literaturg’l Thus for any 7', we have a lower bound on the divergence
that recovers exactly the discriminator objective used in the standard GAN when f(u) = ulogu —
(u+ 1)log(u + 1). As this is a lower bound on the f-divergence, maximizing it with respect to the
discriminator 7" makes sense, and yields a tighter lower bound on the true divergence.

However, the objective to optimize for the generative model, p, remains unclear. In both the original
GAN paper [2] and the f-GAN paper [9], two objectives are proposed (denoted as Gy g and Garr):

1. Grg: Minimize the lower bound in Equation E} For standard GANS, this corresponds to

minimizing the probability of the discriminator classifying a sample from the model as fake.

2. Garr: Optimize an alternative objective:

minimize E, ., [-T(z)] &)
P

For standard GAN:Ss, this corresponds to maximizing the log probability of the discriminator
classifying a sample from the model as real.

’The Fenchel conjugate is defined as f*(t) = SUP,, ¢ dom s (ut — f(u))
3We use ¢ as the data distribution and p as the model distribution, which is the opposite of [9].



The first approach minimizes a lower bound, and thus improvements in the objective can correspond
to making D(g¢||p) smaller, or, more problematically, by making the lower bound on D s (g||p) looser.
In practice this leads to slower convergence, and thus the first objective is not widely used.

The second approach is empirically motivated in [2, 9] as speeding up training, and theoretically
motivated by the observation that p = g remains a fixed point of the learning dynamics. However, the
behavior of this generator objective when the generative model does not have the capacity to realize
the data density remains unclear. This is the regime we care about as most generative models do not
have the capacity to exactly model the data.

2.2 Discriminator as a density ratio estimator

To address the theoretical and practical issues we first present a simple relationship between the
discriminator and an estimate of the density ratio. Given known data and model densities, the optimal
discriminator with respect to an f-divergence, fp, was derived in [9] as:

@) = o (45) ©

where f7, is the derivative of fp. If f], is invertible, we can reverse the relationship, and use the
discriminator to recover the ratio of the data density to the model density:

q(x) ~1 g -1
—— =Up) (T"(@) =~ (fp)  (T(x)) )
p(z)
In practice we don’t have access to the optimal discriminator 7 (), and instead use the current
discriminator T'(x) as an approximation.

2.3 A new set of generator objectives

Given access to an approximate density ratio ¢(x)/p(z), we can now optimize any objective that
depends only on samples from g or p and the value of the density ratio. Conveniently, f-divergences
are a family of divergences that depend only on samples from one distribution and the density ratio!
Given samples from p and an estimate of the density ratio at each point, we can compute an estimate
of the f-divergence, fg between p and g:

Do 00) = Eomy | e (2) | ~ By [ 1 (110)7 € @))] =00 ®

where Gy, ¢ is the generator objective, fg is the f-divergence targeted for the generator, and fp
the f-divergence targeted for the discriminator. f; and fp need not be the same f-divergence. For
non-optimal discriminators, this objective will be a biased approximation of the f-divergence, but is
not guaranteed to be either an upper or lower bound on fg.

Our new algorithm for GAN training iterates the following steps:

1. Optimize the discriminator, 7', to maximize a lower-bound on Dy, (¢||p) using Equation 4]

2. Optimize the generator, p, to minimize G, ¢, using the estimate of the density ratio from
the current discriminator, 7', in Equation @

While the first step is identical to the standard f-GAN training algorithm, the second step comprises
a new generator update that can be used to fit a generative model to the data while targeting any
f-divergence. In practice, we alternate single steps of optimization on each minibatch of data.

2.4 Related work

Several recent papers have identified novel objectives for GAN generators. In [14]], they propose a
generator objective corresponding to f being reverse KL, and show that it improves performance on
image super-resolution. [3] identifies the generator objective that corresponds to minimizing the KL
divergence, but does not empirically evaluate this objective.



Concurrent with our work, two papers propose closely related GAN training algorithms. In [16], they
directly estimate the density ratio by optimizing a different discriminator objective that corresponds
to rewriting the discriminator in terms of the density ratio:

Dy(qllp) = sup (Erq [ (r(@))] = Eawp [f* ((T(2)))]) 9

This approach requires learning a network that directly outputs the density ratio, which can be very
small or very large and in practice the networks that parameterize the density ratio must be clipped
[L6]. We found estimating a function of the density ratio to be more stable, in particular using the

%_ However, there are

likely ways of combining these approaches in the future to directly estimate stable functions of the
density ratio independent of the discriminator divergence.

GAN discriminator objective the discriminator 7'(z) estimates log

More generically, the training process can be thought of as two interacting systems: one that identifies
a statistic of the model and data, and another that uses that statistic to make the model closer to the
data. [7] discusses many approaches similar to the one presented here, but do not present experimental
results.

3 Interpreting the GAN generator objective used in practice, Gy

We can use our new family of generator objectives to better understand Gay, the objective that is used
in practice (Eq. [5). Given that fp, is the standard GAN divergence, we can solve for the generator
divergence, fq, such that Garr = Gy, 1o, yielding:

fa (u) =log (1 + i) (10)

Thus minimizing Gayr corresponds to minimizing an approximation of the fs divergence between
the data density and the model density, not minimizing the Jensen-Shannon divergence.

To better understand the behavior of this divergence, we fit a single Gaussian to a mixture of two
Gaussians in one dimension (Figure[I)). We find that the GAN divergence optimized in practice is
even more mode-seeking than JS and reverse KL. This behavior is likely the cause of many problems
experienced with GANSs in practice: samples often fail to cover the diversity of the dataset.
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Figure 1: The GAN generator objective used in practice (Garr) is mode-seeking when fit to a mixture
of two Gaussians in one dimension. (a) Value of the divergence function, f, as a function of the
density ratio. The behavior of the GAN objective used in practice (Garr) resembles reverse KL when
the model density is greater than the data density. (b) Learned densities when fitting a single Gaussian
generative model to a mixture of two Gaussians (data, black). KL and JS are more mode-covering
learning a generative model with larger variance that covers both modes of the data density, while
reverse KL (RKL) and the GAN generator used in practice (GAN) are more mode-seeking, with
smaller variance that covers only the higher density mode.

4 Experiments

We evaluate our proposed generator objectives at improving the sample quality and diversity on
CIFAR-10. All models were trained using identical architectures and hyperparameters (see Appendix
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Figure 2: Different generator objectives yield different degrees of sample diversity. As we move
from mode seeking a-divergences with low « to mode covering divergences with o > 0 we see
visual evidence of the increase in sample diversity, without a noticeable decrease in sample quality.
In particular, note the overabundance of green and brown tones in the most mode seeking objectives.
Sub-captions give the targeted generator divergence and are ordered from the most mode seeking to
most mode covering. In all cases, the discriminator was trained using the standard GAN objective.



B). The discriminator in all models was trained to optimize the normal GAN objective, corresponding
to maximizing Equation 4] with fp(u) = ulogu — (u + 1)log(u + 1), and using T'(z) = g5(V (x))
with V(z) € R being the output of a neural network and gf(v) = —log(1 + exp(v)) being used
to constrain the range of 7" as in [9]]. For each model, we optimized a different generator objective
by using different values for fs in Equation (8] The generator objectives are derived and listed in
Appendix A.

In order to highlight the effect the generator objective can have on the generated samples, we targeted
several objectives at various « divergences, as well as the traditional generator objective Garr. In
Figure 2] we see that the generator objective has a large impact on sample diversity. In particular, for
very mode-seeking divergences (o« = —3 and @ = —1), the samples fail to capture the diversity of
class labels in the dataset, as is immediately visually obvious from over-representation of greens and
browns in the generated samples. For more mode-covering divergences (o = 0.5 (squared Hellinger),
KL) we see much better diversity in colors and sampled classes, without any noticeably degradation
in sample quality.

5 Discussion

Our work presents a new interpretation of GAN training, and a new set of generator objectives
for GANs that can be used to target any f-divergence. We demonstrate that targeting JS for the
discriminator and targeting other objectives for the generator yields qualitatively different samples,
with mode-seeking objectives producing less diverse samples, and mode-covering objectives pro-
ducing more diverse samples. However, training with very mode-seeking objectives does not yield
extremely high-quality samples. Similarly, targeting mode-covering objectives like KL improves
sample diversity, but the quality of samples does not visibly worsen. Visual evaluation of sample
quality is a potentially fraught measure of quality however. Future work will be needed to investigate
the impact of alternate generator objectives and provide better quantitative metrics and understanding
of what factors drive sample quality and diversity in GANSs.
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A Deriving the generator objectives

Here we derive the generator objectives when the discriminator divergence is fp(u) = ulogu — (u+
1) log(u+ 1), corresponding to the standard GAN discriminator objective. As in [9], we parameterize
the discriminator as T'(x) = g¢(V (x)) where gy has the same range as f},. For the GAN case, this
corresponds to gy (v) = —log(1 + exp(—v)).

First, we can compute the inverse of the gradient of fp which is used to estimate the density ratio:

/7 \—1 e
t)=—
(o)) =
For GANS, the discriminator is parameterized as T'(x) = — log(1+exp(—V(x)), so we can compute
the density ratio as:
T(x
q(z) ~_ € (=) — V@ (11)
plx) — eT@ —1

Given this estimate of the density ratio, we can then compute the generator objective as f (ev("”)).
The table below contains the generator objectives for many different f given fp(u) = ulogu —
(u+1)log(u+1):

Name | Generator f-divergence (f¢) Generator objective (minimized)
GAN-standard log(1+ 1) log (14 e V@) = —T(x)
GAN-RKL —logu —V(x) (12)
GAN-KL ulogu V(x)e" ®)
GAN-«a a(alfl) (u® —1—a(u—1)) a(alfl) (e2V@® —1— a(eV® — 1))




B CIFAR-10 architecture details

This is a slightly modified version of the architecture from [1]]. Input images were scaled from [0, 255]

to [0, 1].
Operation Kernel Strides Feature maps BN? Dropout Nonlinearity
Gz(z)—64 x 1 x 1 input
Transposed convolution 4 x 4 1x1 256 vV 0.0 Leaky ReL.U
Transposed convolution 4 x4 2x2 128 Vv 0.0 Leaky ReLU
Transposed convolution 4 x 4 1x1 64 Vv 0.0 Leaky ReL.U
Transposed convolution 4 x4 2x2 32 Vv 0.0 Leaky ReLU
Transposed convolution 5x5 1x1 32 Vv 0.0 Leaky ReLU
Convolution 1x1 1x1 32 N4 0.0 Leaky ReLU
Convolution 1 x 1 1x1 3 X 0.0 Sigmoid
V(x) -3 x 32 x 32 input
Convolution 5 x5 1x1 32 X 0.2 Maxout
Convolution 4 x4 2x2 64 X 0.5 Maxout
Convolution 4 x4 1x1 128 X 0.5 Maxout
Convolution 4x4 2x2 256 X 0.5 Maxout
Convolution 4x4 1x1 512 X 0.5 Maxout
Convolution 1 x1 1x1 1024 X 0.5 Maxout
Convolution 1 x1 1x1 128 X 0.5 Maxout
Convolution 1 x 1 1x1 1 X 0.5 Linear
Optimizer Adam (o = 1074, 31 = 0.5, 52 = 0.999)
Batch size 128
Leaky ReL.U slope, maxout pieces 0.1, 2

Weight, bias initialization

Isotropic gaussian (i = 0, 0 = 0.01), Constant(0)

Table 1: CIFAR10 model hyperparameters. Maxout layers are used in the discriminator.
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