
Small-scale proxies for large-scale Transformer training instabilities

Mitchell Wortsman Peter J. Liu Lechao Xiao Katie Everett

Alex Alemi Ben Adlam John D. Co-Reyes Izzeddin Gur Abhishek Kumar
Roman Novak Jeffrey Pennington Jascha Sohl-dickstein Kelvin Xu

Jaehoon Lee* Justin Gilmer* Simon Kornblith*

Google DeepMind

Abstract

Teams that have trained large Transformer-based mod-
els have reported training instabilities at large scale
that did not appear when training with the same
hyperparameters at smaller scales. Although the
causes of such instabilities are of scientific interest,
the amount of resources required to reproduce them
has made investigation difficult. In this work, we
seek ways to reproduce and study training stability
and instability at smaller scales. First, we focus on
two sources of training instability described in pre-
vious work: the growth of logits in attention layers
(Dehghani et al., 2023) and divergence of the output
logits from the log probabilities (Chowdhery et al.,
2022). By measuring the relationship between learn-
ing rate and loss across scales, we show that these
instabilities also appear in small models when training
at high learning rates, and that mitigations previously
employed at large scales are equally effective in this
regime. This prompts us to investigate the extent to
which other known optimizer and model interventions
influence the sensitivity of the final loss to changes
in the learning rate. To this end, we study meth-
ods such as warm-up, weight decay, and the µParam
(Yang et al., 2022), and combine techniques to train
small models that achieve similar losses across orders
of magnitude of learning rate variation. Finally, to
conclude our exploration we study two cases where
instabilities can be predicted before they emerge by
examining the scaling behavior of model activation
and gradient norms.

1 Introduction

Scaling up transformers has led to remarkable progress
from chat models to image generation. However, not

10 4 10 3 10 2 10 1 100

Learning rate
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

qk-layernorm = True
qk-layernorm = False

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08
N = 1.2e+09

107 108 109

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

Figure 1: Qk-layernorm [11] enables stable training across
three orders of magnitude of learning rate (LR) variation.
(Top) For transformers with N parameters, we plot the
effect of learning rate on final evaluation loss. (Bottom)
We use LR sensitivity to summarize the top plot. LR sensi-
tivity measures the expected deviation from optimal when
varying learning rate across three orders of magnitude.
Qk-layernorm reduces LR sensitivity, but LR sensitivity
still increases with model scale.

1

ar
X

iv
:2

30
9.

14
32

2v
1

 [
cs

.L
G

]
 2

5
Se

p
20

23

every training run is successful. When training large
Transformers, researchers have reported instabilities
which slow or destabilize learning [6, 11, 52, 35, 8]. As
the resources required for large runs continue to grow,
it is important to examine the ways that Transformer
training can fail.

In this report we reproduce, study, and predict train-
ing instability in Transformer models. We find that
measuring the relationship between learning rate and
loss across scales is a useful tool to identify instability
(e.g., Figure 1). Therefore, we introduce learning rate
(LR) sensitivity, which serves as a useful summary
statistic for learning rate vs. loss curves. LR sensitiv-
ity measures the deviation from optimal performance
when varying LR across orders of magnitude.

We show that two sources of instability, which have
previously been described at scale, can be reproduced
in small Transformers.1 This enables their study
without access to large resource pools. In partic-
ular, we examine the growth of logits in attention
layers [11, 16, 50] and divergence of the output logits
from the log probabilities [6]. As evident from the
learning rate vs. loss curves and by inspecting model
characteristics, both instabilities appear at high learn-
ing rates in small models. Moreover, interventions
which have previously been employed at scale are
also successful in this regime (e.g., Figure 1). These
interventions—qk-layernorm [11]2 and z-loss regular-
ization [6]—reduce LR sensitivity and enable success-
ful training across three orders of magnitude of LR
variation.

These observations raise the question of how other
known optimizer and model interventions affect the
shape of the learning rate vs. loss curves across scales.
Therefore, we study the effect of techniques such as
warm-up, weight decay, and µParam [49] in this con-
text. When employing qk-layernorm and z-loss regu-
larization, these other techniques usually have little
impact on the range of learning rates at which mod-
els can be stably trained, but do affect the sensitiv-
ity to learning rate within this range. In line with
previous work, we find that longer warm-up reduces
learning rate sensitivity, as does the independent scal-
ing of learning rate and weight decay recommended
by Loshchilov and Hutter [33]. One interesting find-
ing is that scaling depth increases LR sensitivity at a

1We focus on instabilities which lead to slow divergence, not
loss spikes (see Section 4).

2Based off currently unpublished investigations of Gilmer
et al. [16].

faster rate than scaling width.

The remainder of our investigation centers on the
scaling behavior for model characteristics such as acti-
vation and gradient norms. Using the attention logit
growth instability as an example, we show that it is
possible to predict an instability before it emerges.
This is in contrast to prior works on scaling which pri-
marily focus on scaling trends related to loss [27, 22].

We conclude by using the scaling behavior of model
characteristics to search for instabilities that are cur-
rently not well documented. Our investigation shows
that gradient norms decrease with both scale and
learning rate, such that the default AdamW [33] ep-
silon hyperparameter is too large. This causes updates
that are too small. We connect this phenomenon and
the attention logit growth instability to parameter
norm growth [34, 29].

Overall, we believe our work presents new scientific
opportunities for studying training stability without
access to large resource pools.

2 Experimental methodology

This section details our experimental set-up (Sec-
tion 2.1) and useful tools employed by our analysis:
(i) measuring the relationship between learning rate
and loss across scales (Section 2.2) and (ii) examining
scaling trends for model characteristics (Section 2.3).

2.1 Experimental set-up

We train small Transformer models [44] with a similar
experimental set-up as GPT-2 [38] implemented in
Flax [20]: the models are decoder-only [31] and trained
with an auto-regressive loss (refer to Section A for
more infrastructure details). While we experimentally
manipulate many of the following hyperparameters,
this section provides their default values, which we
use unless otherwise specified.

By default, we use AdamW [33] with β1 = 0.9,
β2 = 0.95, ϵ = 1e-8, and gradient clipping at global
norm 1. The default warmup is 5e3 steps, and the
default number of total steps is 1e5. We use a linear
schedule for warmup and and a cosine-decay [32] sched-
ule for the remainder, with minimum learning rate
1e-5. We use an independent weight decay of 1e-4 and
auxiliary z-loss [6] with coefficient 1e-4. Sections 3.2.2
and 3.1.2 respectively provide additional information
and ablations on decoupled weight decay and z-loss.

2

We use pre-normalization [38] Transformers with qk-
layernorm [11] (see Section 3.1.1 for information). We
do not use any biases following Chowdhery et al. [6],
and the layernorm [1] ϵ remains at the default value in
Flax [20] of 1e-6. We jointly scale up the embedding
size, depth, and number of heads when scaling param-
eters. We do not use weight tying of the first and last
layer [37], and when reporting the number of parame-
ters we exclude the embedding and head (as in Kaplan
et al. [27]). We use rotary positional embeddings [43],
and for training data we use C4 [39]. Letting d refer
to the model dimension (i.e., the embedding size), the
feed-forward component of the Transformer is an MLP
with hidden dimension of 4d and gelu [21] activations.
As in Vaswani et al. [44] we use factor 1/

√
d scaling

in the self-attention. The embedding initialization
is the default in Flax, which is normally distributed
with standard deviation 1/

√
d. The remainder of the

weights are initialized with a truncated normal distri-
bution with inverse root fan-in standard deviation [18].
The default batch size is 256, where each batch ele-
ment has a sequence length of 512 tokens. Sequences
are packed so that no padding is required. Finally,
we use the vocabulary from Raffel et al. [40] which
has size 32101 and uses a SentencePiece [28] tokenizer.
We train on TPUs [26] in bfloat16 precision using
Flax [20] and JAX [4].

2.2 LR vs. loss curves and learning
rate sensitivity

To investigate how model instability emerges with
scale, it is useful to plot the relationship between
learning rate (LR) and loss for models of different sizes.
For instance, an instability is often characterized by
an explosion in the loss at high learning rates. LR
vs. loss curves can reveal how the lowest unstable
learning rate changes as a function of model size.

To summarize LR vs. loss curves, we use LR sensi-
tivity. LR sensitivity measures the deviation in final
validation loss from optimal when sweeping LR across
three orders of magnitude. If a model fails to train
at high learning rates, then LR sensitivity will be
high. There are cases where LR vs. loss curves and
LR sensitivity are no longer meaningful, for instance
if an intervention changes the meaning of learning
rate—see Appendix B for a detailed discussion.

Let θ = A(η) denote the model weights θ ob-
tained when training with learning rate η, and let
ℓ(θ) denote the validation loss when using weights

θ. For a learning rate range [a, b], let ℓ∗ denote
the loss obtained with the best learning rate, i.e.,
ℓ∗ = minη∈[a,b] ℓ (A(η)). Then, LR sensitivity is de-
fined as LR sensitivity = Eη∈[a,b] [ℓ (A (η))− ℓ∗].

Unless otherwise mentioned, we use the learning rate
range 3e-4 to 3e-1 with AdamW [33] to measure LR
sensitivity, where LR refers to the maximum value in a
cosine decay schedule with warm-up [32]. We consider
LRs in {3e-4, 1e-3, 3e-3, 1e-2, 3e-2, 1e-1, 3e-1} when
computing the minimum and expectation.

2.3 Scaling trends for model character-
istics

To study instability, we also find it useful to examine
scaling trends for model characteristics such as gradi-
ent or activation norms. This method is helpful for
predicting instabilities and contrasts with previous
work on scaling, which primarily focuses on trends
relating model scale and loss [27, 22].

3 Results

This section presents our results on training stability
for small Transformers. Equipped with LR sensitivity
(Section 2.2), we study two known instabilities and
their corresponding mitigation at small scale (Sec-
tion 3.1). This raises the question of how other model
and optimizer interventions effect sensitivity of final
loss to learning rate, which we investigate in Sec-
tion 3.2. Finally, we examine whether instabilities can
be reliably predicted before they emerge: Section 3.3
predicts when the logit growth instability may cause
divergence in a larger model, while Section 3.4 aims
to find other issues that may occur when scaling up
with our default hyperparameters.

3.1 Reproducing two known instabili-
ties at small scale

Here, we examine two instabilities that have previ-
ously been described at scale: the growth of logits in
attention layers [11, 16, 50] and divergence of the out-
put logits from the log probabilities [6]. By examining
LR vs. loss curves, we show that these instabilities
can be reproduced in small models by using high learn-
ing rates and that mitigations employed at scale are
effective in this regime.

3

0 2000 4000 6000 8000 10000
Step

3

4

5

6

7

8
Lo

ss

0 2000 4000 6000 8000 10000
Step

101

102

103

104

105

106

M
ax

 a
tte

nt
io

n
lo

gi
t

0 2000 4000 6000 8000 10000
Step

3

4

5

6

7

8

Lo
ss

qk-layernorm = True qk-layernorm = False

0 2000 4000 6000 8000 10000
Step

101

102

103

104

105

106
M

ax
 a

tte
nt

io
n

lo
gi

t

Num params = 9.4e6, LR = 0.1

Num params = 4.8e9, LR = 0.01

Figure 2: The attention logit growth instability [11, 50]
appears in small models at high learning rates. The mit-
igation of applying qk-layernorm proposed by Dehghani
et al. [11] is equally effective in the small-scale regime.
The max attention logit is reported for layer 0, which we
typically observe to have the largest logit values.

3.1.1 Attention logit growth

Researchers have previously documented that Trans-
former training fails when the attention logits be-
come large [11, 50]. In Dehghani et al. [11], this issue
emerged when training a ViT model [14] with 22 bil-
lion parameters.

In the self-attention layer of a Transformer [44],
queries qi and keys ki are combined to compute the
attention logits zij = ⟨qi, kj⟩/

√
dh, where dh is the

head dimension. Next, the attention logits are passed
through a softmax to produce attention weights, which
are used to combine values vi. Dehghani et al. [11] ob-
served that the attention logits z became large, which
they refered to as attention logit growth. As a re-
sult, the attention weights collapse to one-hot vectors,
which was named attention entropy collapse by Zhai
et al. [50]. To resolve this issue, Dehghani et al. [11]
proposed qk-layernorm, which applies LayerNorm [1]
to the queries and keys before computing the attention
logits.

In our experiments, we find that models need not be
large to exhibit instability related to attention logit
growth. As shown in Figure 1, the maximum learning
rate at which small models can be trained increases

10 4 10 3 10 2 10 1 100

Learning rate

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Fin
al

 e
va

l l
os

s

z-loss coefficient 1e-4
No z-loss
Weight decay 1e-4
No weight decay

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08

107

Number of parameters

10 1

100
LR

 se
ns

iti
vi

ty

Figure 3: The effect of the output logit divergence instabil-
ity [6] and the z-loss mitigation [6] (Section 3.1.2). Models
in this experiment have qk-layernorm [11].

when using qk-layernorm. Without qk-layernorm, the
learning rate at which models diverge becomes smaller
with increasing model size. By contrast, models with
qk-layernorm exhibit considerably lower LR sensitivity
and train to low loss at high learning rates. As a
highlight, qk-layernorm allows training a model with
1.2B parameters at learning rate 0.3. Both with and
without qk-layernorm, LR sensitivity increases with
scale.

Figure 2 displays the loss and max attention logit
for two model scales that differ by three orders of
magnitude. In both cases, the loss diverges without
qk-layernorm. Our results in Appendix Figure E.1
suggest that attention logit growth is due to growth
in the queries and keys, not due to an increase in
their alignment. Finally, Appendix C connects this
instability to the quadratic dependence of attention
logits on parameter norms.

4

0 50000 100000
Step

3.6

3.8

4.0

4.2

4.4
Ev

al
 lo

ss

z-loss coefficient 1e-4
No z-loss

Weight decay 1e-4
No weight decay

0 50000 100000
Step

100

80

60

40

20

0

Ou
tp

ut
 lo

gi
t m

ea
n

Figure 4: An example of the output logit divergence insta-
bility [6] (Section 3.1.2) in a 2.4M parameter Transformer
at learning rate 0.1.

3.1.2 Output logit divergence

Another instability reported by researchers training
large models is divergence in the output logits from
the log probabilities [6]. Just as before, we reproduce
this instability with small models at large learning
rates, and the proposed mitigation ameliorates the
issue. Overall, Figure 3 summarizes the effect.

Let y denote the model’s output logits, which are
used to compute class probabilities pi via a softmax
pi = eyi/Z where Z =

∑
j e

yj . This instability occurs
when the logits diverge and become very negative, as
illustrated in Figure 4 for a 2.4M parameter model at
learning rate 0.1. In contrast to the attention logit
growth instability, this divergence occurs towards the
end of training. The mitigation proposed by Chowdh-
ery et al. [6] is to encourage logZ to remain close to
zero. They add an auxiliary loss log2 Z, referred to
as z-loss, with coefficient 1e-4.

As illustrated in Figures 3 and 4, we find that instabil-
ity related to output logit divergence occurs in models
with no weight decay regardless of scale, and z-loss
resolves this instability. Weight decay also mitigates
this instability for the larger models we test.

3.2 Measuring the effect of other
known interventions

The previous section used the relationship between
learning rate and loss as a useful tool for examining
two known instabilities and their mitigation. This
raises the question of how other known model and
optimizer interventions affect the shape of LR vs. loss
curves across scales. In particular, can LR sensitivity
help identify additional issues or resolutions when

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fin
al

 e
va

l l
os

s

Warmup = 50
Warmup = 500
Warmup = 5000
Warmup = 10000
Warmup = 25000

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters

10 1

2 × 10 2

3 × 10 2
4 × 10 2

6 × 10 2
LR

 se
ns

iti
vi

ty

Figure 5: The effect of warm-up length for different model
sizes. Longer warm-up reduces LR sensitivity and loss,
especially for the larger models we test. Models in this
experiment use qk-layernorm [11].

scaling? This section aims to answer this question for
common techniques such as warm-up, weight decay,
and µParam [49].

3.2.1 Warm-up

As illustrated by Figure 5, a longer warm-up period
reduces LR sensitivity. This is most clear for the larger
models, which are not stable at LR 3e-1 without long
warm-up. The number of total steps is fixed to 1e5 in
this experiment, and all models use qk-layernorm. The
importance of warm-up for stability has previously
been highlighted [17, 42, 30], although these works do
not measure scaling behavior.

3.2.2 Independent weight decay

Parameterizing weight decay independently of learn-
ing rate reduces LR sensitivity, as illustrated in Fig-
ure 6. While this was recommended by Loshchilov
and Hutter [33], it is not common practice in the

5

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2
Fin

al
 e

va
l l

os
s

Independent decay = True
Independent decay = False

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters

10 1

2 × 10 2

3 × 10 2
4 × 10 2

6 × 10 2

LR
 se

ns
iti

vi
ty

Figure 6: Independently scaling LR without also scaling
weight decay reduces LR sensitivity. While this was recom-
mended by Loshchilov and Hutter [33], it is not common
practice in the default AdamW implementations in popu-
lar libraries. Refer to Section 3.2.2 for more information.
Models in this experiment use qk-layernorm [11].

default AdamW implementations of PyTorch [36] or
Optax [2]. We explain the differences below.

For parameters θ, let ∆ = v/ (
√
u+ ϵ) denote the

AdamW update without learning rate or weight decay.
For weight decay coefficient λ, max learning rate η,
and schedule st ∈ [0, 1], Loshchilov and Hutter [33]
recommend the update θ ← θ−st(η∆−λθ), which we
refer to as independent decay. On the other hand, the
default implementation in PyTorch or Optax applies
the update θ ← θ − stη(∆ − λθ), i.e., η now scales
both terms.

When reporting LR sensitivity without independent
decay in Figure 6, we report the minimum LR sensi-
tivity over ranges [1e-4, 1e-1] and [3e-4, 3e-1] because
the former is sometimes better centered on the min-
imum. The default setting in this paper is to use
independent decay. When using independent decay

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fin
al

 e
va

l l
os

s

Scaling width
Scaling depth

dim = 256
dim = 512
dim = 768
dim = 1024
dim = 2048

layers = 3
layers = 6
layers = 12
layers = 24
layers = 48
layers = 96

107 108

Number of parameters

10 1

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2
LR

 se
ns

iti
vi

ty Scaling width
Scaling depth

Figure 7: Independently scaling depth increases LR sen-
sitivity at a faster rate than scaling width, though also
produces a model with lower loss at the largest scale we
test. Refer to Appendix Figure E.2 for this experiment
without qk-layernorm.

we set λ=1e-4, and without independent decay we set
λ=0.1. A sweep on weight decay values is conducted
in Figure E.10.

3.2.3 Scaling width vs. depth

We have so far consistently observed that increasing
the number of parameters increases LR sensitivity. We
now examine which part of scaling is most responsible.

Our results, illustrated by Figure 7, indicate that scal-
ing depth increases LR sensitivity at a faster rate
than scaling width. However, at the largest scale we
test, independently scaling depth produces a model
with lower validation loss. A validation loss compar-
ison between width scaling, depth scaling, and joint
scaling is in Appendix Figure E.3. The standard prac-
tice of joint scaling performs best at the largest scale
and also has a more reliable scaling prediction when
extrapolating.

6

10 4 10 3 10 2 10 1 100

Learning rate
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25
Fin

al
 e

va
l l

os
s

Standard
MuParam (simple)

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08
N = 1.2e+09

107 108 109

Number of parameters

2 × 10 2

3 × 10 2

4 × 10 2

6 × 10 2

LR
 se

ns
iti

vi
ty Standard

MuParam (simple)

Figure 8: Measuring the effect of µParam on LR sensi-
tivity for models with qk-layernorm [11]. In our setting
µParam succeeds in stabilizing the optimal LR, though it
does not improve loss or reduce LR sensitivity. For more
information refer to Section 3.2.4.

When scaling depth, we use d = 512, and when scaling
width, we use 6 layers. The number of heads is scaled
proportionally with width, so that the head dimension
remains the same.

Figure E.2 repeats this experiment without qk-
layernorm, finding that the attention logit growth
instability occurs more frequently at scale regardless
of whether width or depth are scaled.

3.2.4 µParam

Yang and Hu [48] introduced the µParam method for
parameterizing a neural network. As a product, the
optimal LR remains consistent when scaling model
width [49]. This section tests the effect of µParam
on LR sensitivity, and examines whether µParam
alleviates the need for qk-layernorm [11].

As illustrated by Figure 8, µParam does succeed in
stabilizing the optimal LR at the scale we test. How-

ever, µParam does not improve loss or reduce LR
sensitivity in our experiments. Appendix Figure E.4
repeats this experiment without qk-layernorm. Our
results indicate that µParam does not alleviate the
need for this intervention at high learning rates. We
note that from a practical perspective, reducing LR
sensitivity is not important if the optimal LR does
not change.

We refer to the variant of µParam that we use in these
experiments as µParam (simple) because it maintains
only the core feature of µParam. We add additional
features from Yang et al. [49] in Appendix Figure E.5
without measurable improvement at the largest scale
we test. For µParam (simple) we make the following
changes from our standard baseline: scale the LR for
linear layers by base-fan-in/fan-in. For µParam (full)
there are three additional changes: (i) initialize the
head with standard deviation

√
base-fan-in/fan-in; (ii)

change the 1/
√
dh scaling factor in attention layers

to 1/dh where dh is the head dimension; and (iii)
initialize the query projection weights with zeros. For
base-fan-in we use the fan-in values for the smallest
model we test, which has width 256.

We comment briefly on the aforementioned changes (ii)
and (iii). First, we ablate on change (ii) in isolation in
Appendix Figure E.6. While this intervention reduces
loss slightly at the smallest scale we test, the reverse
is true for the largest scale we test. Also, removing
the square root from the scaling factor in attention
layers does not alleviate the need for qk-layernorm.
Finally, with regards to change (iii), we note that in
preliminary experiments this change had no noticeable
effect.

3.2.5 Additional interventions

This section recreates the previous plots with addi-
tional interventions or hyperparameter changes. Cor-
responding figures are displayed in the appendix.

• Changing the number of training steps from 1e5
to 5e4 or 2e5 does not meaningfully change LR
sensitivity (Appendix Figure E.7).

• We try applying qk-layernorm across the whole
model dimension instead of individually per-head
with shared paramters. As illustrated in Ap-
pendix Figure E.8, the latter performs better.
We use per-head qk-layernorm as the default in
all other experiments.

• Increasing the batch size from 256 to 512 or 1024

7

107 108 109

Num params

102

104

106

M
ax

 a
tte

nt
io

n
lo

gi
t

LR = 0.0001

qk-layernorm = True
qk-layernorm = False

Successful
Instability

Quadratic fit
Extrapolated trend

Additional experiment to
validate predicted instability

107 108 109

Num params

101

102

103

104

105

106

LR = 0.0003

107 108 109

Num params

101

102

103

104

105

106

LR = 0.003

107 108 109

Num params

101

102

103

104

105

106

LR = 0.01

107 108 109

Num params

101

102

103

104

105

106

LR = 0.03

107 108 109

Num params

101

102

103

104

105

106

LR = 0.1

Figure 9: Predicting the attention logit growth instability via scaling behavior of model characteristics. We extrapolate
to predict that a larger model will become unstable at LR 1e-2, and run an experiment to confirm the prediction.
Refer to Section 3.3 for more information.

does not meaningfully change LR sensitivity (Ap-
pendix Figure E.9, each batch element contains
512 tokens). When increasing batch size we de-
crease the number of training steps so that the
amount of data seen is constant. We believe a
similar effect would be observed if instead we held
the number of steps constant because changing
the number of steps has no impact on LR sensi-
tivity at batch size 256 (Appendix Figure E.7).

• The effect of changing the weight decay from 1e-4
is illustrated in Figure E.10. Increasing decay
appears to slightly shift the optimal LR right.

• We find that the logit growth instability is not
due to the softmax in the self-attention layer, as it
still occurs with a pointwise variant of attention
(Appendix Figure E.11).

3.3 Predicting attention logit growth
instability from scaling behavior of
model characteristics

A central question when studying instabilities is
whether they can be predicted. We now examine
whether it is possible to predict the logit growth in-
stability before it occurs. We track the attention
logit maximums across model scales and fit a curve
to the data. We use this to predict that a 4.8B pa-
rameter model will be unstable at LR 1e-2 without
qk-layernorm and run an experiment to confirm this
prediction.

Figure 9 plots the number of parameters vs. max

100 101 102 103 104

Scaling constant

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Fin
al

 lo
ss

Fixed scale
Zero layer baseline

Figure 10: Enforcing a max attention logit of approxi-
mately κ in a small model to determine which value of κ
inhibits learning.

attention logit at different learning rate values.3 At
each learning rate, we fit a quadratic to predict how
the max attention logit will change with model scale.

We first noticed that all points with attention logits
above 1e4 diverged. Moreover, the quadratic fit pre-
dicted that for LR 1e-2 the next model scale would
also cross that value. Based on this prediction, we
trained a new 4.8B parameter model at LR 1e-2. This
model diverged as predicted. Not only do we pre-
dict the divergence, but our fit closely extrapolates to
predict the value of the max attention logit.

3We use block 0, which typically has the largest logits, and
consider the value at step 2e3. Much earlier than 2e3 was
uninformative, and much later the unstable points had long
past diverged.

8

107 108 109

Num params

10 8

10 7

10 6

10 5

10 4

Gr
ad

 R
M

S

10 3 10 2 10 1

LR

10 8

10 7

10 6

10 5

10 4

0 5 10 15 20
Block index

10 9

10 8

10 7

0.0003 0.3
LR

9.4e6 1.2e9
Num params

9.4e6 1.2e9
Num params (at LR 3e-1)

Figure 11: Predicting a potential instability from the scaling behavior of model characteristics. The gradient root
mean square (RMS) decreases with num params (left) and learning rate (middle). These trends indicate that
hyperparameter adjustment may be required to successfully scale further, as the RMS is approaching the default
AdamW ϵ hyperparameter. If the gradient RMS becomes too small without adjusting ϵ or weight decay, a layer may
collapse. The gradient RMS in the left and middle plot is reported for the first MLP layer of block 0, but we observe
similar trends for other layers (e.g., Appendix Figure E.12). Gradient RMS across different blocks is also reported
(right). Gradient and update RMS are averaged over the final 500 steps, refer to Appendix Figure E.13 for the data
during training.

One question unresolved by our analysis so far is
whether we could have predicted that instability arises
when the max attention logit exceeds 1e4 without ma-
nipulating learning rate and model size. We take ini-
tial steps towards an answer by transplanting different
values of max attention logit into a small network with
10M parameters. For different constants κ we pass the
queries and keys through g(z) =

√
κ·z/

√
Ei[z2i] before

computing the attention logits. Results are illustrated
in Figure 10. Loss deteriorates around κ =1e3, and
by κ =1e4 the loss exceeds that of a zero-layer bigram
model consisting of the Transformer we use without
any self-attention or MLP layers.

3.4 Searching for new instabilities via
scaling trends of model character-
istics

This section examines whether the scaling behavior
of model characteristics can be used to predict new
issues with the default model and hyperparameter
settings.

In Figure 11 we examine scaling trends for the gradient
root mean square RMS(g) =

√
Ei [g2i]. This figure

reports the RMS for the first layer of the MLP, though
we observe similar trends for other layers (Appendix
Figure E.12).

As models get larger, the value that grad RMS ap-

proaches is cause for concern. At the largest scale
and learning rate we test, grad RMS is around the
default AdamW ϵ hyperparameter. Recall that the
unscaled AdamW update is ∆ = v/ (

√
u+ ϵ), where v

and u are the first and second gradient moment EMA,
respectively. If the grad RMS is on the same order as
ϵ, then ∆ will decrease in magnitude as illustrated by
Figure 13, and parameters will not receive learning
signals as intended.

An obvious mitigation for this issue is to simply lower
the AdamW ϵ hyperparameter from its default of 1e-
8. We conduct this experiment for a 4.8B parameter
model at LR 0.3 and present the results in Figure 12.
Decreasing ϵ to 1e-15 improves loss and mitigates a
collapse in grad RMS. We believe this improvement
will only increase at scale. On the other hand, in-
creasing ϵ to 1e-6 results in an instability (shown in
Figure E.15).

Figure 13 expands on this result by illustrating the
grad and update RMS throughout training at the
largest scale and learning rate we test. When the grad
RMS reaches ϵ, the update RMS becomes small. Fig-
ure E.13 presents data from an analogous experiment
at many different scales and LRs, demonstrating that
this issue is most apparent for the larger models and
LRs we test.

Although we identified the instability above by empir-

9

0 50000 100000
Step

2.6

2.8

3.0

3.2

3.4

3.6
Lo

ss

Eps = 1e-8 Eps = 1e-15

0 10 20
Block index

10 13

10 12

10 11

10 10

10 9

10 8

Gr
ad

 R
M

S

Figure 12: Decreasing the AdamW ϵ from its default value
of 1e-8 to 1e-15 improves loss for a 4.8B parameter model
at LR 0.3. When increasing ϵ to 1e-6, loss diverged. Grad
RMS is averaged over the final 500 steps for the first
layer in the MLP; refer to Figure 13 for data throughout
training.

ically measuring the scaling behavior of the gradients,
a mechanistic explanation exists. As learning rate
increases, so does the parameter RMS. A larger pa-
rameter RMS leads to a larger RMS for the features
output by each Transformer block. Then, the overall
output RMS in turn increases with depth due to resid-
ual connections. The overall effect is that for larger
networks and learning rates, the Transformer output
RMS entering the final layernorm will grow. Since the
layernorm gradients are scaled by the inverse of their
input RMS, the gradient received by the Transformer
will shrink. Refer to Appendix C for a more detailed
discussion.

4 Related work

This paper mainly focuses on the effect of known in-
terventions and instabilities, and so related work has
been primarily discussed when relevant. This includes
the attention growth instability observed by Dehghani
et al. [11], Zhai et al. [50], and the final logit diver-
gence issue encountered by Chowdhery et al. [6]. How-
ever, we highlight similar experimental methods in
previous work. For instance, Yang et al. [49] also
measure the relationship between LR and loss across
scales, but their focus is on centering the optimum
(see Section 3.2.4). In addition, Zhai et al. [50] elicit
instability in base models by doubling learning rate,
and Dettmers et al. [12] measure the presence of out-
lier features as a function of scale.

There are also important instabilities and related top-

ics we have not directly discussed so far. For instance,
we have primarily focused on instabilities that lead
to a slow divergence, and we now summarize research
on fast loss spikes. This instability is characterized
by a quick increase in the loss that often eventually
recovers.

The Edge of Stability and fast spikes

The conventional understanding of gradient descent
predicts that loss instability only occurs when the
learning rate exceeds 2/λmax(H), where H is the
Hessian. However recent investigations into large
batch neural network training dynamics have re-
vealed a more complicated picture via edge of stability
(EoS) [7]. When training neural networks with large
batch SGD, the loss curvature constantly evolves via
the interaction of two processes: progressive sharpen-
ing and self stabilization. Progressive sharpening is
the empirical observation that when LR < 2/λmax(H),
the curvature gradually increases until the stability
threshold is violated. When the learning rate becomes
too large relative to the curvature, fast loss spikes oc-
cur and the parameters oscillate into a region with
smaller λmax(H) where stable training and progressive
sharpening resumes. The latter process where insta-
bility results in smaller λmax(H) is self-stabilization,
a theoretical model of which is given in Damian et al.
[9]. Gradually shrinking λmax(H) via self stabilization
was shown to be a primary mechanism behind the
success of learning rate warmup in Gilmer et al. [17],
who closely studied the connections between curva-
ture, initialization, architecture and max trainable
learning rates.

Cohen et al. [8] further analyze edge of stability of
dynamics with adaptive optimizers, showing that
progressive sharpening interacts with both the self-
stabilization process and the adaptive optimizer state.
This interaction results in the preconditioned sharp-
ness λmax(P

−1H) oscillating around an optimizer spe-
cific threshold (38/LR in the case of Adam with
β1=0.9). Adaptive EoS (AEoS) can also result
in periodic loss spikes when progressive sharpening
pushes the preconditioned sharpness above the stabil-
ity threshold, however the optimizer hyperparameters
play a role. In particular, when LR>38/λmax(P

−1H),
two mechanisms are now in play to resolve the step
size being too big—either H can shrink or P−1 can
shrink (or both). Cohen et al. [8] found that when
β2 is large, H tends to shrink and fast loss spikes
result during the process, resembling the self stabiliza-
tion process observed with gradient descent. However

10

0 25000 50000 75000100000
Step

10 11

10 10

10 9

10 8

10 7

10 6

Gr
ad

 R
M

S
Block = 0

0 25000 50000 75000100000
Step

10 11

10 10

10 9

10 8

10 7

10 6

Block = 6

0 25000 50000 75000100000
Step

10 11

10 10

10 9

10 8

10 7

10 6

Block = 16

0 25000 50000 75000100000
Step

10 11

10 10

10 9

10 8

10 7

10 6

Block = 22

0 25000 50000 75000100000
Step

10 3

10 2

10 1

Un
sc

al
ed

 u
pd

at
e

RM
S

Eps = 1e-6 (diverged) Eps = 1e-8 (default) Eps = 1e-15

0 25000 50000 75000100000
Step

10 3

10 2

10 1

0 25000 50000 75000100000
Step

10 3

10 2

10 1

0 25000 50000 75000100000
Step

10 3

10 2

10 1

Figure 13: The top row displays the root mean square (RMS) of the gradient for the first MLP layer at different
blocks throughout the network. When the grad RMS drops below the AdamW ϵ hyperparameter, the magnitude of
the update decreases, as illustrated by the bottom row. Experiment conducted with a 4.8B parameter model trained
with LR 0.3. The experiment with ϵ = 1e-6 was stopped when loss diverged.

when β2 is small, P−1 tends to shrink, no loss spikes
are observed, and λmax(H) tends to gradually increase
throughout training.

It is noteworthy that the adaptive edge of stability
process (and the role of β2) studied in Cohen et al. [8]
offers a more complete understanding for loss spikes
studied in a body of literature [42, 6, 35, 46, 51, 5].
For example, Shazeer and Stern [42] argue that during
training of Transformers with adaptive optimizers the
optimizer update can become too big resulting in a
loss spike followed by recovery. This is sometimes
attributed to the adaptive optimizer state becoming
“stale”, which is consistent with the observation the
reducing β2 resolves the loss spikes [42, 46, 51]. This
is perhaps the same observation as Cohen et al. [8]
that reducing β2 allows P−1 to change quicker to
adjust to the process of progressive sharpening. AEoS
also offers an explanation for the periodic loss spikes
observed when training large transformer models [35].

Parameter-free methods and more parameter-
izations. While our work has studied sensitivity
to learning rate, there is also research that aims to
eliminate the need to specify a learning rate [24, 10].

Based on their analysis, Ivgi et al. [24] set the step
size for iteration t to the maximum distance from the
initialization divided by the root sum of historical
gradient squares. Moreover, while our work investi-
gated µParam, there are additional parameterizations
for which it would be interesting to explore LR vs.
loss [13, 47, 3, 25].

5 Conclusion

As the compute required to train the largest models
continues to increase, it becomes increasingly impor-
tant to understand if training will be stable. This
paper has shown that useful insights on stability can
be found when studying small Transformers. We hope
that this opens new opportunities for impactful re-
search which benefits large runs without access to
large resource pools.

Acknowledgements

We thank George Dahl for thorough comments and
suggestions, and Hugo Larochelle and Rif A. Saurous
for helpful discussion. Also, we thank the members of

11

the Google DeepMind PAGI team for their support
of this effort, Noah Fiedel, Noah Constant, Aaron
Parisi, Alex Rizkowsky, Avi Singh, Azade Nova, Bernd
Bohnet, Daniel Freeman, Gamaleldin Elsayed, Hanie
Sedghi, Isabelle Simpson, James Harrison, Jiri Hron,
Kathleen Kenealy, Kevin Swersky, Kshiteej Mahajan,
Laura Culp, Max Bileschi, Merrie Morris, Rosanne
Liu, Yundi Qian, Sharad Vikram, Tris Warkentin.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E

Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[2] Igor Babuschkin, Kate Baumli, Alison Bell, Surya
Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka,
Antoine Dedieu, Claudio Fantacci, Jonathan God-
win, Chris Jones, Ross Hemsley, Tom Hennigan,
Matteo Hessel, Shaobo Hou, Steven Kapturowski,
Thomas Keck, Iurii Kemaev, Michael King, Markus
Kunesch, Lena Martens, Hamza Merzic, Vladimir
Mikulik, Tamara Norman, George Papamakarios,
John Quan, Roman Ring, Francisco Ruiz, Alvaro
Sanchez, Laurent Sartran, Rosalia Schneider, Eren
Sezener, Stephen Spencer, Srivatsan Srinivasan,
Miloš Stanojević, Wojciech Stokowiec, Luyu Wang,
Guangyao Zhou, and Fabio Viola. The DeepMind
JAX Ecosystem, 2020. URL http://github.com/

deepmind.

[3] Blake Bordelon and Cengiz Pehlevan. Dynamics
of finite width kernel and prediction fluctuations
in mean field neural networks. arXiv preprint
arXiv:2304.03408, 2023.

[4] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake Van-
derPlas, Skye Wanderman-Milne, and Qiao Zhang.
JAX: composable transformations of Python+NumPy
programs, 2018. URL http://github.com/google/

jax.

[5] X. Chen, S. Xie, and K. He. An empirical
study of training self-supervised vision transform-
ers. In 2021 IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 9620–
9629, Los Alamitos, CA, USA, oct 2021. IEEE
Computer Society. doi: 10.1109/ICCV48922.2021.
00950. URL https://doi.ieeecomputersociety.

org/10.1109/ICCV48922.2021.00950.

[6] Aakanksha Chowdhery, Sharan Narang, Jacob De-
vlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,

Paul Barham, Hyung Won Chung, Charles Sut-
ton, Sebastian Gehrmann, et al. Palm: Scaling
language modeling with pathways. arXiv preprint
arXiv:2204.02311, 2022.

[7] Jeremy M Cohen, Simran Kaur, Yuanzhi Li, J Zico
Kolter, and Ameet Talwalkar. Gradient descent on
neural networks typically occurs at the edge of sta-
bility. arXiv preprint arXiv:2103.00065, 2021.

[8] Jeremy M Cohen, Behrooz Ghorbani, Shankar Kr-
ishnan, Naman Agarwal, Sourabh Medapati, Michal
Badura, Daniel Suo, David Cardoze, Zachary Nado,
George E Dahl, et al. Adaptive gradient methods at
the edge of stability. arXiv preprint arXiv:2207.14484,
2022.

[9] Alex Damian, Eshaan Nichani, and Jason D Lee. Self-
stabilization: The implicit bias of gradient descent at
the edge of stability. arXiv preprint arXiv:2209.15594,
2022.

[10] Aaron Defazio and Konstantin Mishchenko. Learning-
rate-free learning by d-adaptation. arXiv preprint
arXiv:2301.07733, 2023.

[11] Mostafa Dehghani, Josip Djolonga, Basil Mustafa,
Piotr Padlewski, Jonathan Heek, Justin Gilmer,
Andreas Steiner, Mathilde Caron, Robert Geirhos,
Ibrahim Alabdulmohsin, et al. Scaling vision trans-
formers to 22 billion parameters. arXiv preprint
arXiv:2302.05442, 2023.

[12] Tim Dettmers, Mike Lewis, Younes Belkada, and
Luke Zettlemoyer. Llm. int8 (): 8-bit matrix mul-
tiplication for transformers at scale. arXiv preprint
arXiv:2208.07339, 2022.

[13] Emily Dinan, Sho Yaida, and Susan Zhang. Effective
theory of transformers at initialization. arXiv preprint
arXiv:2304.02034, 2023.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16
words: Transformers for image recognition at scale.
In International Conference on Learning Representa-
tions (ICLR), 2021. https://arxiv.org/abs/2010.

11929.

[15] Colin Gaffney, Dinghua Li, Ruoxin Sang, Ayush Jain,
and Haitang Hu. Orbax, 2023. URL http://github.

com/google/orbax.

[16] Justin Gilmer, Andrea Schioppa, and Jeremy Co-
hen. Intriguing properties of transformer training
instabilities. To appear.

12

http://github.com/deepmind
http://github.com/deepmind
http://github.com/google/jax
http://github.com/google/jax
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00950
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00950
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2010.11929
http://github.com/google/orbax
http://github.com/google/orbax

[17] Justin Gilmer, Behrooz Ghorbani, Ankush Garg,
Sneha Kudugunta, Behnam Neyshabur, David Car-
doze, George Dahl, Zachary Nado, and Orhan Firat.
A loss curvature perspective on training instability
in deep learning. arXiv preprint arXiv:2110.04369,
2021.

[18] Xavier Glorot and Yoshua Bengio. Understanding the
difficulty of training deep feedforward neural networks.
In Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics, pages
249–256. JMLR Workshop and Conference Proceed-
ings, 2010.

[19] Google. Grain - feeding jax models, 2023. URL
http://github.com/google/grain.

[20] Jonathan Heek, Anselm Levskaya, Avital Oliver, Mar-
vin Ritter, Bertrand Rondepierre, Andreas Steiner,
and Marc van Zee. Flax: A neural network li-
brary and ecosystem for JAX, 2023. URL http:

//github.com/google/flax.

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error
linear units (gelus). arXiv preprint arXiv:1606.08415,
2016.

[22] Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-
ford, Diego de Las Casas, Lisa Anne Hendricks, Jo-
hannes Welbl, Aidan Clark, et al. Training compute-
optimal large language models. arXiv preprint
arXiv:2203.15556, 2022.

[23] Weizhe Hua, Zihang Dai, Hanxiao Liu, and Quoc Le.
Transformer quality in linear time. In International
Conference on Machine Learning, pages 9099–9117.
PMLR, 2022.

[24] Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is
sgd’s best friend: A parameter-free dynamic step size
schedule. arXiv preprint arXiv:2302.12022, 2023.

[25] Arthur Jacot, Franck Gabriel, and Clément Hon-
gler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2018.
https://arxiv.org/abs/1806.07572.

[26] Norman P Jouppi, Cliff Young, Nishant Patil, David
Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah
Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor pro-
cessing unit. In Proceedings of the 44th annual inter-
national symposium on computer architecture, pages
1–12, 2017.

[27] Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott

Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361, 2020.

[28] Taku Kudo and John Richardson. Sentencepiece: A
simple and language independent subword tokenizer
and detokenizer for neural text processing. arXiv
preprint arXiv:1808.06226, 2018.

[29] Jaehoon Lee. A random walk model of transformer
parameter growth, 2023.

[30] Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
On the variance of the adaptive learning rate and
beyond. arXiv preprint arXiv:1908.03265, 2019.

[31] Peter J. Liu*, Mohammad Saleh*, Etienne Pot, Ben
Goodrich, Ryan Sepassi, Lukasz Kaiser, and Noam
Shazeer. Generating wikipedia by summarizing long
sequences. In International Conference on Learning
Representations, 2018. URL https://openreview.

net/forum?id=Hyg0vbWC-.

[32] Ilya Loshchilov and Frank Hutter. Sgdr: Stochas-
tic gradient descent with warm restarts. In In-
ternational Conference on Learning Representations
(ICLR), 2016. https://arxiv.org/abs/1608.03983.

[33] Ilya Loshchilov and Frank Hutter. Decoupled weight
decay regularization. In International Conference
on Learning Representations (ICLR), 2019. https:

//openreview.net/forum?id=Bkg6RiCqY7.

[34] William Merrill, Vivek Ramanujan, Yoav Goldberg,
Roy Schwartz, and Noah Smith. Effects of param-
eter norm growth during transformer training: In-
ductive bias from gradient descent. arXiv preprint
arXiv:2010.09697, 2020.

[35] Igor Molybog, Peter Albert, Moya Chen, Zachary
DeVito, David Esiobu, Naman Goyal, Punit Singh
Koura, Sharan Narang, Andrew Poulton, Ruan Silva,
et al. A theory on adam instability in large-scale
machine learning. arXiv preprint arXiv:2304.09871,
2023.

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in
Neural Information Processing Systems (NeurIPS),
2019. https://arxiv.org/abs/1912.01703.

[37] Ofir Press and Lior Wolf. Using the output embed-
ding to improve language models. In Proceedings
of the 15th Conference of the European Chapter of

13

http://github.com/google/grain
http://github.com/google/flax
http://github.com/google/flax
https://arxiv.org/abs/1806.07572
https://openreview.net/forum?id=Hyg0vbWC-
https://openreview.net/forum?id=Hyg0vbWC-
https://arxiv.org/abs/1608.03983
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1912.01703

the Association for Computational Linguistics: Vol-
ume 2, Short Papers, pages 157–163, Valencia, Spain,
April 2017. Association for Computational Linguistics.
URL https://aclanthology.org/E17-2025.

[38] Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. Language Models
are Unsupervised Multitask Learners, 2019. https:

//openai.com/blog/better-language-models/.

[39] Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of
transfer learning with a unified text-to-text trans-
former. Journal of Machine Learning Research, 2020.
http://jmlr.org/papers/v21/20-074.html.

[40] Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. Exploring the limits of trans-
fer learning with a unified text-to-text transformer.
Journal of Machine Learning Research, 21(140):1–67,
2020. URL http://jmlr.org/papers/v21/20-074.

html.

[41] Jie Ren, Samyam Rajbhandari, Reza Yazdani Am-
inabadi, Olatunji Ruwase, Shuangyan Yang, Min-
jia Zhang, Dong Li, and Yuxiong He. {ZeRO-
Offload}: Democratizing {Billion-Scale} model train-
ing. In 2021 USENIX Annual Technical Conference
(USENIX ATC 21), pages 551–564, 2021.

[42] Noam Shazeer and Mitchell Stern. Adafactor: Adap-
tive learning rates with sublinear memory cost. In
International Conference on Machine Learning, pages
4596–4604. PMLR, 2018.

[43] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv
preprint arXiv:2104.09864, 2021.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you
need. Advances in neural information processing sys-
tems, 30, 2017.

[45] Mitchell Wortsman, Jaehoon Lee, Justin Gilmer, and
Simon Kornblith. Replacing softmax with relu in
vision transformers.

[46] Mitchell Wortsman, Tim Dettmers, Luke Zettlemoyer,
Ari Morcos, Ali Farhadi, and Ludwig Schmidt. Sta-
ble and low-precision training for large-scale vision-
language models. arXiv preprint arXiv:2304.13013,
2023.

[47] Sho Yaida. Meta-principled family of hyperparameter
scaling strategies. arXiv preprint arXiv:2210.04909,
2022.

[48] Greg Yang and Edward J Hu. Tensor programs iv:
Feature learning in infinite-width neural networks. In
International Conference on Machine Learning, pages
11727–11737. PMLR, 2021.

[49] Greg Yang, Edward J Hu, Igor Babuschkin, Szymon
Sidor, Xiaodong Liu, David Farhi, Nick Ryder, Jakub
Pachocki, Weizhu Chen, and Jianfeng Gao. Ten-
sor programs v: Tuning large neural networks via
zero-shot hyperparameter transfer. arXiv preprint
arXiv:2203.03466, 2022.

[50] Shuangfei Zhai, Tatiana Likhomanenko, Etai Littwin,
Dan Busbridge, Jason Ramapuram, Yizhe Zhang,
Jiatao Gu, and Josh Susskind. Stabilizing trans-
former training by preventing attention entropy col-
lapse. arXiv preprint arXiv:2303.06296, 2023.

[51] Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov,
and Lucas Beyer. Sigmoid loss for language image
pre-training. arXiv preprint arXiv:2303.15343, 2023.

[52] Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

14

https://aclanthology.org/E17-2025
https://openai.com/blog/better-language-models/
https://openai.com/blog/better-language-models/
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

A Additional infrastructure de-
tails

This Section provides more details on the training in-
frastructure, which is built on Flax [20], Jax [4], and
TPUs [26], and we call NanoDO. To enable larger
model training, we shard the model and optimizer
states as in FSDP [41], then specify these shadings
when compiling with JIT. We use Orbax [15] for check-
pointing, and Grain [19] for deterministic data loading.
When loading data, sequences are packed so that no
padding is required—if a sequence is less tokens than
the context length hyperparameter, then an end of
sequence token is appended, followed by the beginning
of a new sequence.

B When is learning rate sensi-
tivity a useful metric

There are cases where LR sensitivity (defined in Sec-
tion 2.2) is no longer a useful metric. This section
details these scenarios and justifies the use of LR
sensitivity for the interventions in this paper.

Interventions which change the meaning of
learning rate

When an intervention changes the meaning of learning
rate then comparing LR sensitivity is not useful. A
clear example of this would be taking the square root
of the LR before passing it to the optimizer, but there
are more subtle cases to be cautious of when using
LR sensitivity.

In general, we avoid manipulations where the mean-
ing of LR meaningfully changes. In some cases, we
have good empirical evidence that the meaning of
the learning rate has not changed when intervening.
For instance, the LR vs. loss curves are indistin-
guishable up to some critical learning rate when using
qk-layernorm (Figure 1), adding z-loss (Figure 3), or
changing warm-up.

In other cases, such as when testing µParam (Sec-
tion 3.2.4), we believe that LR sensitivity is useful
despite a per-layer modification of LR. This is be-
cause the per-layer LR is manipulated linearly, and
this modification does not change for different points
on the LR vs loss curve.

The one experiment in this paper where we believe LR
sensitivity is likely not a useful metric is when scaling

learning rate by the root mean square of the parame-
ters (Figure E.14). Therefore, we do not measure LR
sensitivity in that case.

Shifting of the optimal LR

The definition of LR sensitivity in Section 2.2 does not
account for the optimal LR shifting when specifying
the LR range [a, b]. In practice we recommend shifting
the three order of magnitude range [a, b] to correspond
with this shift. For instance, we shift the range in
Section 3.2.2, as discussed in more detail in the section.
However, our main experiments (e.g., Figure 1) do not
test at a large enough scale to necessitate this shift.

LR sensitivity is invariant to loss

Another limitation of the LR sensitivity metric is
that it is invariant to the scale of the loss. If the
network consistently achieves random performance
across learning rates, then LR sensitivity will be zero.
We do not offer a solution to this, and instead recom-
mend that LR sensitivity should always be examined
in combination with the LR vs. loss curves as we do
in this paper. It is meant as a useful summary of the
LR vs. loss curves, not as a metric to optimize in
isolation.

C Parameter and output norm
growth

This section discusses the growth of the parameter
norm during Transformer training as previously stud-
ied by Merrill et al. [34], Lee [29], and relates this phe-
nomenon to the attention logit growth and AdamW
epsilon instabilities (Sections 3.1.1 and 3.4, respec-
tively).

An observation of Lee [29] is that, when using an adap-
tive optimizer, the movement of parameters can be
approximated by a random walk. We show parameter
root mean square (RMS) throughout training in Fig-
ure C.14, which appears to follow a predictable trend.
This aligns with the aforementioned observation, and
is further supported by Figure C.2. Figure C.2 dis-
plays parameter RMS as a function model scale and
learning rate, averaged over the last 500 training steps.
As before, parameter RMS is determined primarily by
learning rate. As parameter RMS grows, we would
expect output RMS to also grow. This is validated by

4We show parameter RMS for the first MLP layer in various
blocks, but expect other layers to exhibit similar trends.

15

Figure C.3, which shows that the RMS of the Trans-
former block output is mainly determined by learning
rate, and follows a very similar trend to parameter
RMS.

There are two interesting takeaways. First, this ob-
servation helps to explain why the attention output
logits become large at high learning rates as observed
by Dehghani et al. [11] and Section 3.1.1. This is
the only feature in the network we test whose magni-
tude depends quadratically on parameter RMS. For
inputs X with unit RMS, a typical matrix multiply
XW with parameters W will result in features Y
where RMS(Y) is a linear function of RMS(W). On
the other hand, the attention logit entries are com-
puted via ⟨XW1, XW2⟩ so depend quadratically on
RMS(W). They are therefore the first to become large
when the parameter norm grows. Next, this helps to
explain the decreasing trend in gradient scale observed
in Section 3.4 (Figure 11). In a pre-normalization [38]
Transformer [44] there is an output layernorm layer [1]
after the last Transformer block and before the final
linear layer. The gradient from this output layernorm
layer is scaled by the reciprocal of the input RMS. In
addition to growing with LR, this RMS is growing
with depth because of the residual connections (Fig-
ure C.3). As the RMS leaving the last Transformer
block grows, the gradient received shrinks.

For completeness we now compute the layernorm gra-
dient to input x. We assume the input as mean zero
and the layernorm has no bias for simplicity. Let

z = LayerNorm(x) = α · x√
Ei [x2

i] + ϵ
= α · x

m1/2

(1)

where m = Ei

[
x2
i

]
+ ϵ.

Then

∂ℓ

∂xj
=
∑
k

∂ℓ

∂zk

∂zk
∂xj

(2)

=
∂ℓ

∂zj
· αj

m1/2
+
∑
k

∂ℓ

∂zk
·
(
−1

2

)
· αkxk

m3/2
· 2
n
· xj (3)

=
1

m1/2

(
αj

∂ℓ

∂zj
− xj

nm1/2

∑
k

∂ℓ

∂zk
αkxk

)
(4)

=
1

m1/2

(
αj

∂ℓ

∂zj
− xj

nm1/2
⟨∇z, α · x⟩

)
(5)

Equivalently,

∇x =
1

m1/2

(
α⊙∇z −

⟨∇z, α⊙ x⟩
nm1/2

⊙ x

)
. (6)

D Author contributions

Mitchell Wortsman led the project, ran the experi-
ments and produced the figures, contributed substan-
tially to the infrastructure for experimentation, the
framing and direction, and the writing.

Peter J. Liu led the infrastructure and creation of
NanoDO for experimentation, provided key insights
and advice on multiple technical areas, and con-
tributed to the writing.

Lechao Xiao and Katie Everett contributed to the
infrastructure used for experimentation, provided key
insight related to parameterization, and contributed
to the writing.

Alex Alemi, Ben Adlam, John D. Co-Reyes, Izzeddin
Gur, Abhishek Kumar, Roman Novak, Jeffrey Pen-
nington, Jascha Sohl-dickstein, and Kelvin Xu were
active participants in weekly brainstorming meetings
which motivated, influenced, and elucidated technical
concepts pertaining to this work.

Jaehoon Lee and Justin Gilmer were senior authors
advising on the project, contributed substantially to
the framing and direction, provided key insight and
advice on multiple technical areas, and contributed
to the writing. Jaehoon led the connection with pa-
rameter norm growth. Justin proposed to plot loss as
a function of learning rate for different model sizes,
and performed initial experiments demonstrating that
attention logit growth could be reproduced at high
learning rates in small models.

Simon Kornblith was the lead advisor on the project,
contributing substantially to the framing, direction,
infrastructure, and writing. Simon initially brain-
stormed the project with Mitchell, and was Mitchell’s
host for the summer internship during which this re-
search was conducted, providing substantial technical
support.

E Additional figures

This Section contains the additional Figures referenced
in the main text.

16

0 25000 50000 75000100000
Step

10 3

10 1

101

103

105

107

109

Bl
oc

k
ou

tp
ut

 R
M

S
Block = 2

0 25000 50000 75000100000
Step

10 3

10 1

101

103

105

107

109 Block = 5

0 25000 50000 75000100000
Step

10 3

10 1

101

103

105

107

109 Block = 11

0 25000 50000 75000100000
Step

10 3

10 1

101

103

105

107

109 Block = 23

0 25000 50000 75000100000
Step

10 3

10 2

10 1

100

101

Fir
st

 M
LP

 w
ei

gh
t R

M
S

LR = 0.0001
LR = 0.0003

LR = 0.001
LR = 0.003

LR = 0.01
LR = 0.03

LR = 0.1
LR = 0.3

0 25000 50000 75000100000
Step

10 3

10 2

10 1

100

101

0 25000 50000 75000100000
Step

10 3

10 2

10 1

100

101

0 25000 50000 75000100000
Step

10 3

10 2

10 1

100

101

Figure C.1: (Top) The root mean square (RMS) of the Transformer block outputs throughout training. (Bottom) The
RMS of the MLP weights throughout training, for the first of the two layers in the MLP. Recall RMS(X) =

√
Ei[X2

i].
RMS is mostly determined by LR, with higher LR corresponding with a higher RMS for block outputs and MLP
weights. Different curves at the same learning rate correspond to different model scales. This experiment uses a
decoupled weight decay values of 1e-4.

107 108 109

Num params
10 2

10 1

100

101

M
LP

 w
ei

gh
t R

M
S

10 3 10 2 10 1

LR
10 2

10 1

100

101

0 5 10 15 20
Block index

100

101

0.0003 0.3
LR

9.4e6 1.2e9
Num params

9.4e6 1.2e9
Num params (at LR 3e-1)

Figure C.2: The root mean square (RMS) of the MLP weights are roughly consistent with scale (left) but increase
reliably with learning rate (center). At high learning rates, parameters later in the network can be affected by the
AdamW epsilon instability discussed in Section 3.4 (right). This experiment considers the first of the two MLP layers
in the block, and data for the first two plots are from block two. RMS is averaged over the final 500 training steps,
where RMS(X) =

√
Ei[X2

i].

17

107 108 109

Num params

100

102

104

106

Bl
oc

k
ou

tp
ut

 R
M

S

10 3 10 2 10 1

LR

100

102

104

106

5 10 15 20 25
Block index

106

107

108

0.0003 0.3
LR

9.4e6 1.2e9
Num params

9.4e6 1.2e9
Num params (at LR 3e-1)

Figure C.3: The root mean square (RMS) of the Transformer block outputs are roughly consistent with scale (left)
but increase with learning rate (center). RMS increases deeper in the transformer because of the residual connections,
which is shown for very high learning rates (right). The first two plots are for block index two, and RMS is averaged
over the final 500 training steps. Recall RMS(X) =

√
Ei[X2

i].

0 2000 4000 6000 8000 10000
Step

3

4

5

6

7

8

Lo
ss

0 2000 4000 6000 8000 10000
Step

102

104

106

108

M
ax

 a
tte

nt
io

n
lo

gi
t

0 2000 4000 6000 8000 10000
Step

101

102

103

104
M

ea
n

qu
er

y
no

rm

0 2000 4000 6000 8000 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Qu
er

y-
ke

y
co

ss
im

 m
ea

n

0 2000 4000 6000 8000 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Qu
er

y-
ke

y
co

ss
im

 m
ax

qk-layernorm = True qk-layernorm = False

0 2000 4000 6000 8000 10000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Av
g.

 m
ax

 a
tte

nt
io

n
pr

ob
.

Num params = 9.4e6, LR = 0.1, block 0

Figure E.1: The logit growth instability [11, 50] occurs when the norm of the query and keys increases, not due to an
increase in their cosine similarity.

18

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fin
al

 e
va

l l
os

s

Scaling width
Scaling depth

dim = 256
dim = 512
dim = 768
dim = 1024
dim = 2048

layers = 3
layers = 6
layers = 12
layers = 24
layers = 48
layers = 96

Figure E.2: The effect of scaling width vs. scaling depth
without qk-layernorm [11].

107 108

Num params

2.8 × 100

3 × 100

3.2 × 100

3.4 × 100

3.6 × 100

Fin
al

 e
va

l l
os

s

Joint scaling
Scaling depth
Scaling width

Figure E.3: Jointly scaling width and depth leads to lower
loss than independently scaling depth or width at the
largest scale we test. It also leads to a more reliable
scaling prediction when extrapolating from models with
less than 1e8 parameters. Best loss is reported in a sweep
over learning rates.

10 4 10 3 10 2 10 1 100

Learning rate
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

Standard
MuParam (simple)

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08
N = 1.2e+09

107 108 109

Number of parameters

100

LR
 se

ns
iti

vi
ty Standard

MuParam (simple)

Figure E.4: The effect of µParam on LR sensitivity for
models without qk-layernorm [11]. µParam succeeds in
stabilizing the optimal LR, but does not alleviate the
need for qk-layernorm. For more information refer to
Section 3.2.4.

19

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Fin
al

 e
va

l l
os

s

qk-layernorm = True
Standard
MuParam (simple)
MuParam (intermediate)
MuParam (full)

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Fin
al

 e
va

l l
os

s

qk-layernorm = False
Standard
MuParam (simple)
MuParam (intermediate)
MuParam (full)

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

Figure E.5: Comparing µParam (full), which implements µParam as described in Yang et al. [49] with and without
qk-layernorm, with µParam (simple) and µParam (intermediate). There are four changes in µParam (full), (i) Scale
the LR for linear layers by base-fan-in/fan-in, (ii) initialize the head with standard deviation

√
base-fan-in/fan-in.

(iii) change the 1/
√
dh scaling factor in attention layers to 1/dh where dh is the head dimension, and (iv) initialize the

query projection weights with zeros. µParam (intermediate) consists of (i) and (ii), while µParam (simple) is only (i).
With µParam (full) and qk-layernorm, the model trains without diverging at LR 1. However at the best LR there is
no measurable improvement over µParam (simple) at the largest scale we test.

20

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Fin
al

 e
va

l l
os

s

qk-layernorm = True
1/sqrt(head dim) scaling
1/(head dim) scaling

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Fin
al

 e
va

l l
os

s

qk-layernorm = False
1/sqrt(head dim) scaling
1/(head dim) scaling

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

Figure E.6: Measuring the effect of changing the 1/
√
dh term in attention to 1/dh, where dh is head dimension.

Vaswani et al. [44] use 1/
√
dh while Yang et al. [49] use 1/dh.

21

10 4 10 3 10 2 10 1 100

Learning rate

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

Steps = 50000
Steps = 100000
Steps = 200000

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters

2 × 10 2

3 × 10 2

4 × 10 2

LR
 se

ns
iti

vi
ty

Figure E.7: Changing the number of total training steps
from 1e5 to 5e4 or 2e5 does not have a large effect of the
shape of the learning rate vs. loss curves at the scales we
test.

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fin
al

 e
va

l l
os

s

Head-dim qk-layernorm
Model-dim qk-layernorm

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

Figure E.8: We achieve slightly better performance when
applying qk-layernorm individually per-head instead of
across the model dimension. The per-head variant has
only head-dim learnable parameters instead of model-dim
parameters. We use the per-head variant as the default in
this paper, and we never use biases.

22

10 4 10 3 10 2 10 1 100

Learning rate

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

qk-layernorm = True
Batch size = 256
Batch size = 512
Batch size = 1024

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

10 4 10 3 10 2 10 1 100

Learning rate

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

qk-layernorm = False
Batch size = 256
Batch size = 512
Batch size = 1024

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

Figure E.9: Increasing the batch size from 256 to 512 or 1024 does not have a large effect on the shape of the learning
rate vs. loss curves at the scales we test. Each batch element contains 512 tokens, and we use 256 as the default.

23

10 4 10 3 10 2 10 1 100

Learning rate

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

qk-layernorm = True
Weight decay = 3e-04
Weight decay = 1e-04
Weight decay = 3e-05
Weight decay = 0

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

10 4 10 3 10 2 10 1 100

Learning rate

2.75

3.00

3.25

3.50

3.75

4.00

4.25

Fin
al

 e
va

l l
os

s

qk-layernorm = False
Weight decay = 3e-04
Weight decay = 1e-04
Weight decay = 3e-05
Weight decay = 0

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters
10 2

10 1

100

LR
 se

ns
iti

vi
ty

Figure E.10: The effect of weight decay on LR sensitivity. We use independent weight decay as described in Section 3.2.2
and recommended by [33].

24

10 4 10 3 10 2 10 1

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fin
al

 e
va

l l
os

s

qk-layernorm = True
Softmax attention
Pointwise attention

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

10 4 10 3 10 2 10 1

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

Fin
al

 e
va

l l
os

s

qk-layernorm = False
Softmax attention
Pointwise attention

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

Figure E.11: The logit growth instability occurs even without softmax. For the pointwise variant of attention here,
we replace softmax with squared-relu as described by [23]. As recommended in [45] we add a scaling factor which
depends on sequence length. In this case, we use inverse square root.

107 108 109

Num params

10 8

10 7

10 6

10 5

10 4

Gr
ad

 R
M

S

10 3 10 2 10 1

LR

10 8

10 6

10 4

0 5 10 15 20
Block index

10 10

10 9

10 8

10 7

0.0003 0.3
LR

9.4e6 1.2e9
Num params

9.4e6 1.2e9
Num params (at LR 3e-1)

Figure E.12: Recreating Figure 11 with the kernel projection instead of the first MLP layer.

25

0 25000 50000 75000100000
Step

3 × 100

4 × 100

5 × 100

Lo
ss

LR = 0.0003

0 25000 50000 75000100000
Step

3 × 100

4 × 100

5 × 100 LR = 0.001

0 25000 50000 75000100000
Step

3 × 100

4 × 100

5 × 100 LR = 0.01

0 25000 50000 75000100000
Step

3 × 100

4 × 100

5 × 100 LR = 0.3

0 25000 50000 75000100000
Step

10 8

10 7

10 6

10 5

10 4

Gr
ad

 R
M

S

0 25000 50000 75000100000
Step

10 8

10 7

10 6

10 5

10 4

0 25000 50000 75000100000
Step

10 8

10 7

10 6

10 5

10 4

0 25000 50000 75000100000
Step

10 8

10 7

10 6

10 5

10 4

0 25000 50000 75000100000
Step

10 1

Un
sc

al
ed

 u
pd

at
e

RM
S

N = 9.4e+06 N = 1.9e+07 N = 4.2e+07 N = 8.5e+07 N = 1.5e+08 N = 3.0e+08 N = 1.2e+09

0 25000 50000 75000100000
Step

10 1

0 25000 50000 75000100000
Step

10 1

0 25000 50000 75000100000
Step

10 1

Figure E.13: For various learning rates and model sizes we display the gradient root mean square (RMS), and the
unscaled update RMS. The unscaled udpate is the update returned by the optimizer before scaling by learning rate.
The gradient and update are shown here for the first MLP layer of the Transformer. The update RMS falls when the
grad RMS approaches the AdamW ϵ of 1e-8.

26

10 4 10 3 10 2 10 1 100

Learning rate

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

Fin
al

 e
va

l l
os

s

Standard
Scale LR by RMS

N = 2.4e+06
N = 9.4e+06
N = 1.9e+07
N = 4.2e+07
N = 8.5e+07
N = 1.5e+08
N = 3.0e+08

107 108

Number of parameters

10 1

100

LR
 se

ns
iti

vi
ty Standard

Scale LR by RMSFigure E.14: The effect of scaling the learning rate for
parameters p by max (RMS(p), 1e-3) as in AdaFactor [42].
As discussed by Appendix B, it is not meaningful to com-
pare LR sensitivity in this case as this intervention modifies
the meaning of learning rate. Just as in µParam [49], RMS
scaling appears to stabilize the optimal LR in the range
we test.

0 2000 4000
Step

4

5

6

7

8

Lo
ss

Eps = 1e-6

2000 4000
Step

10 7

10 6

10 5

10 4

Gr
ad

 R
M

S

Figure E.15: Increasing the AdamW ϵ from its default
value of 1e-8 to 1e-6 causes a loss divergence for a 4.8B
parameter model at LR 0.3. Grad RMS is for the first
layer in the MLP.

27

	Introduction
	Experimental methodology
	Experimental set-up
	LR vs. loss curves and learning rate sensitivity
	Scaling trends for model characteristics

	Results
	Reproducing two known instabilities at small scale
	Attention logit growth
	Output logit divergence

	Measuring the effect of other known interventions
	Warm-up
	Independent weight decay
	Scaling width vs. depth
	Param
	Additional interventions

	Predicting attention logit growth instability from scaling behavior of model characteristics
	Searching for new instabilities via scaling trends of model characteristics

	Related work
	Conclusion
	Additional infrastructure details
	When is learning rate sensitivity a useful metric
	Parameter and output norm growth
	Author contributions
	Additional figures

