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Abstract

Synchronization is an increasingly important concept in modern physics.[9]

Following analytical work,[4] we investigate the possibility of observing

synchronization in a system of Nanoelectromechanical oscillators. A pair

of doubly clamped mechanical resonators of about 10 µm in length were

produced an analyzed. Resonant frequency, nonlinearity, quality factor,

frequency tuning, and coupling measurements were taken, employing pri-

marily a bridge measurement scheme using a network analyzer. Results

were used to quantity the region of synchronization in terms of physi-

cal parameters. It was then attempted to construct a system capable of

synchronization and obtain evidence of that fact.

1 Introduction

Synchronization has proved itself to be a ubiquitous and useful concept in

physics. As it continues to be applied in more and more technical applications,

new types of synchronized systems are being explored. [9]

The field of nanoelectromechanical systems (NEMS) offers a possible realm

for the creation of arrays of oscillators. NEMS offer a nice field for synchro-

nization, with their small sizes, very high quality accurate devices can be man-
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ufactured, leaving open the possibility for the construction of large arrays. The

Roukes group on campus has begun the investigation of the use of nanoelec-

tromechanical cantilevers to create a system of interacting self-sustained os-

cillators. Much theory has already been developed on the synchronization of

oscillators, in particular work has been done by Michael Cross et al. on the

synchronization due to reactive coupling inherit in NEMS systems [3, 2].

Furthermore, experimental investigations have begun. The Roukes group

has constructed various NEMS resonators, in particular beam resonators with

working turning have been constructed, similar to the picture below. These

devices have already proven possible of self-sustained oscillation. [8] These are

the devices I hope to eventually synchronize.

Figure 1: Two-Oscillator System produced by the Roukes group

2 Theory

For most of the theory, I worked off of the model developed by Michael Cross.

[3, 2, 4] He models the oscilllator as a damped harmonic oscillator, including

nonlinear amplifier gains, nonlinear damping, and reactive coupling between the

2



devices. For the one device we can write this as:

ẍ1−
[
G(1− η̃Gx2

1)− γ(1− η̃γx2
1)
]
ẋ1+ω2

0

[
(1 + δ1 − ãx2

1)x1 −D(x1 − x2)
]

=
f1
m

Where G represents the amplifier gain used to sustain oscillations, η̃G its nonlin-

ear term, γ inherent damping and η̃γ its nonlinear term, ω0 the devices (planned)

intrinsic frequency, δ the true frequency deviation, ã the Duffing nonlinearity,

D the coupling coefficient, and f1 the driving force.

This model can then be reduced to a form remeniscient of the Kuramoto

model for investigating synchronized oscillators. Matt Grau carried out much

of this work as part of a previous SURF,[6] he obtained the model

żn = i(ωn − α|zn|2)zn + (1− |zn|2)zn + i

N∑
m=1

βn,m(zm − zn)

for a set of coupled nonlinear oscillators, where z now is a complex number

representing the oscillator amplitude and phase. He found that they in general

will become synchronized in a region determined by the boundary

β(∆ω) =

√
1
8

(
1 + 3α2 ± 4

√
3α∆ω + 4(∆ω)2

)

In order to determine where we expect to observe synchronization for our NEMS

oscillators, it remains to properly transform this region in terms of model pa-

rameters into the space of real parameters.

2.1 Coupling

Among the criteria that can affect whether or not two oscillators eventually

synchronize are the frequency difference between the devices as well as the

strength of the coupling. Unfortunately the particulars of coupling between
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Figure 2: Measurement Scheme

doubly clamped silicon carbide beams with length ` = 10µm long, t = 100nm

thick and D = 100nm apart are not properly understood.

Among the possible schemes for coupling between the beams, electrostatic

coupling seems a natural avenue to explore.[1] Wherein we have a potential and

force of the form:

U = −1
2
C(x)V 2 F = −dU

dx
=
V 2

2
C ′(x)

where for thin wires near each other we have

C(x) =
πε`

log
(
x
d +

√
x2

d2 − 1
)

where d is the diameter of the wires. Given a device separation distance of

D, lets expand this about the point x = D + δ. We obtain an equation for the

coupling of the form:

D(x2 − x1) =
V 2
DC

2m
[C0 + C1(x2 − x1)]

with

ε ≈ ε0 = 8.85× 10−12 s4A2

m3kg

D ≈ 200 nm d ≈ 100 nm ` ≈ 10 µm m = 350 fg

4



this equates to

C0 ≡
−lπε

√
D2 − d2 log2

[
D+
√
D2−d2
d

] ≈ −9.25× 10−10

C1 ≡
−`πε

(
D log

(
D+
√
D2−d2
d

)
+ 2
√
D2 − d2

)
d
√
D2

d2 − 1(d2 −D2) log3
[
D+
√
D2−d2
d

] ≈ 0.014

This should give us an estimate for the observed electrostatic coupling be-

tween the two devices. We should expect the coupling to be quadratic in the

bias voltage with constants close to those predicted.

3 Experimental Results

In order to investigate we created a chip with two pairs of devices, with each pair

as shown in Figure ??. Two pairs were prepared and bridged so as to reduce

noise in the measurement. The devices were driven using a magnetomotive

technique,[5] and analyzed with a network analyzer. In order to minimize noise

a resistance bridge is used to match impedances between the two pairs, while

improving the signal to noise ratio this shifts the phase of the response. In

addition, the presence of a gate adjacent to each device (Figure 1) allows for

the tuning of the devices inherent frequency.[7]

3.1 Nonlinear Behavior

Using this technique and a basic reflection measurement technique, we were able

to investigate the first chip. The devices show nice nonlinear response, typified

in the graphs below [Fig 3]. As the drive amplitude is increased, our devices

response peak turns over. The nonlinear behavior is important. We need our

devices to be in the nonlinear regime in order to build effective oscillators and
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eventually achieve synchronization.
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Figure 3: Nonlinear Response (Drive: -84, -81, -78, -75 dBm)

3.2 Tuning

The devices intrinsic frequency can be tuned by putting a bias voltage on the

gates (2,3,5,9 above [Fig 2]), which can be used to change the resonant frequency.

Initial investigation of tuning, while it worked for the 0 - 2 volt range, yielding a

tuning of about 30 kHz per volt, at 2 volts our signal was lost and upon reduction

we found the resonant frequency had jumped about a MHz, suggesting that we

had burned off some of the aluminum. As such we destroyed the first device.

Having destroyed the first device, we lost confidence in the Si3N4. Next

we tried using all metal devices. The initial probe of the resistances looked
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promising. We proceeded to attempt to locate the four resonances for the chip.

Soon we ran into some problems, loosing the signal for all but one of the devices.

So, we proceeded to tune this remaining device. All in all we were able to tune

this remaining good device a full 1.1 MHz after applying 12 volts. At this point

this remaining device died as well.

The all metal devices proved themselves more robust than the Si3N4. Un-

fortunately, the fabrication of all metal devices had a low yield. Frequently the

devices would pull in to the substrate. These considerations led us to adopt the

use of silicon carbide with gold deposited on top. These devices proved easy to

fabricate as well as robust to tuning.

3.3 Coupling Results

We can measure the coupling directly by tuning one device through the res-

onance of its partner. If we only drive one beam in a pair, as we tune its

frequency through that of its partner, we should instead of seeing the response

of a single device, we will begin to excite the coupled modes of the two devices,

the separation of which will detail the strength of the coupling independent of

other effects. I.e. we could imagine a system described by the following:

ẍ1 +
ω1

Q1
ẋ1 + ω2

1x1 = D(x2 − x1) + Feiωt

ẍ2 +
ω2

Q2
ẋ2 + ω2

2x2 = D(x1 − x2)

If we examine the frequency response of x1 taking ω1 as a tunable parameter,

qualitatively, if ω1 is far from ω2 we see a single resonance that moves with ω1, as

ω1 approaches ω2 we begin to see the excitation of a second resonance. At this

point the two peaks correspond to the coupled devices operating in the in phase

and out of phase modes. As we move through the point at which ω1 = ω2 the

two resonances do not cross, always maintaining a minimum separation distance.
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This separation distances corresponds directly to the strength of the reactive

coupling parameter D in model. In particular we should expect the difference

of the squared frequencies for the two modes to equal 2D, ω2
s − ω2

a = 2D.

In fact this is precisely the type of behavior we observe. Driving a single

beam and tuning it past the resonance of the other excites two modes as shown

in Figure 4. Using a bias tee we can put a DC voltage between the two beams

without interfering with the AC drive. Doing this, putting different bias voltages

between the two beams and tuning to the point where the peaks are equal in

magnitude, we can obtain measurements for the coupling coefficient D as a

function of the bias voltage. The data is summarized in Figure 5. We see

that there is some inherent coupling even with zero bias voltage between the

two beams. This is expected and due probably to elastic coupling through the

medium. We also see that the coupling coefficient grows quadratically in the

bias voltage, as predicted in our electrostatic coupling model. At higher coupling

voltages the curve begins to flatten out, probably due to higher order terms in

the electrostatic coupling as well as the possibility of other coupling schemes. A

fit was done on the early data points, obtaining a quadratic fit of high quality.

The observed coupling coefficient obtained is D = 0.21719 Hz2/V2.

In order to work towards the production of a system of synchronized NEMS

oscillators, the coupling needs to be characterized and understood. We have

attempted to explain a possible scheme for coupling as well as estimate its

strength. The coupling strength was determined experimentally by observing

the coupled mode responses, this gave observed values for the behavior of the

coupling through a range of different bias voltages between the beams. With

the use of theoretical results obtained by Matt Grau[6], these results can be

used to ascertain whether or not synchronization of oscillators produced from

these resonators is realistic.
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Figure 4: Example Data

Figure 5: Observed Coupling Data
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