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Abstract

The Bayesian posterior minimizes the “infer-
ential risk” which itself bounds the “predic-
tive risk.” This bound is tight when the
likelihood and prior are well-specified. How-
ever since misspecification induces a gap,
the Bayesian posterior predictive distribu-
tion may have poor generalization perfor-
mance. This work develops a multi-sample
loss (PACm) which can close the gap by span-
ning a trade-off between the two risks. The
loss is computationally favorable and offers
PAC generalization guarantees. Empirical
study demonstrates improvement to the pre-
dictive distribution.

1 INTRODUCTION

The top and bottom of fig. 1 differ by one line of
code. The traditionally inferred (approximate) poste-
rior (top) fails to capture heteroskedastic noise in the
data while the proposed generalization (bottom) suc-
ceeds. Both rows employ the same data, computation,
model family, and optimization procedure; only the
loss differs in that the first row is based on a average-
log-likelihood and the second is based on a log-average-
likelihood. Before we can understand how/why this
works and return to this example (section 7 and fig. 3),
we have to examine the difference between prediction
and inference.

Pierre-Simon Laplace formulated one of the earliest
Bayesian models (Laplace, 1781). Interested in the
relative birth rates of boys and girls, he derived the
Beta posterior for a Bernoulli likelihood with uniform
prior. He then calculated the “posterior probability”
that the girl birth rate exceeds the boy rate and found
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Figure 1: A misspecified Bayesian neural network changes
from bad uncertainty estimation in the posterior predictive
distribution (top row), to good uncertainty estimation in
the (approximate) posterior predictive distribution (bot-
tom row) with a simple (one line) change to the training
loss. Cutout from fig. 3.

it to be about 10−42 from which he concluded that it
is “as certain as any other moral truth” that humans
give birth to more boys than girls.1

Laplace’s objective was to infer the parameter of his
model. Broadly, science has followed suit. When a
modern experiment such as the Large Hadron Col-
lider at CERN processes terabytes of particle colli-
sion data (ATLAS Collaboration, 2012), or the Planck
satellite maps the cosmic microwave background ra-
diation (Planck Collaboration VI, 2019), they are in
pursuit of the “moral truth” of some underlying pa-
rameter of the universe.

Contrast this with modern machine learning. The pri-
mary goal of machine learning is to build models that
can form accurate predictions. We do not truly care
about the value of the millionth weight in a deep neu-
ral network. We do not believe the parameters of the
neural network are reflecting any “moral truths”.

For well-specified models the goals of inference and
prediction align. For misspecified models they might
not. Optimizing for inference when you’ll evaluate a

1The presently accepted natural ratio is 105 males per
100 females (Ritchie, 2019)
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model’s predictive performance can thus lead to sub-
optimal predictive models. As made clear in the work
of Masegosa (2019), both Bayesian inference and Max-
imum Likelihood target inferential rather than predic-
tive risks, and can make poor predictions under model
misspecification.

This issue is well known (Minka, 2000; Domingos,
1997), and much prior work has been done to address
it (e.g. (Berger et al., 1994; Yao et al., 2018; Bissiri
et al., 2016; Grünwald et al., 2017; Jankowiak et al.,
2020a,b; Masegosa, 2019; Wei et al., 2020; Sheth and
Khardon, 2020)).

In this work, we introduce a tractable multi-sample
bound on the true predictive risk which sometimes
manifests in the striking improvement demonstrated in
in figs. 1 and 3. This bound interchanges average and
log and enables recovering ordinary Maximum Likeli-
hood and the Bayesian posterior. We list our contri-
butions as:

1. We introduce a novel multisample bound on the
true predictive risk, which we call PACm-Bayes.

2. We show that this bound can be a tighter bound
on the predictive risk than similar bounds on the
inferential risk, which are widely used in practice.

3. We prove that the slack of this bound is bounded
under similar sets of assumptions as used in other
PAC-Bayes works.

4. We present empirical study demonstrating that
PACm-Bayes leads to models which better approx-
imate the true predictive distribution than alter-
native bounds on the predictive risks.

2 PREDICTIVE AND
INFERENTIAL RISKS

We begin at a high level with a statistical model :
p(X|θ) defining a distribution of each observed da-
tum X in terms of some parameters θ. After observ-
ing n data points drawn from some true distribution
Xn def

= {Xi}ni
iid∼ ν(X), we form a distribution of pa-

rameters, q(Θ|{xi}ni ). In principle we can then com-
pute the predictive distribution:

p(X|{xi}ni ) = Eq(Θ|{xi}ni ) [p(X|Θ)] . (1)

(For brevity we henceforth regard q’s dependence on
{xi}ni as implicit.) If we had some particular applica-
tion in mind, at this point we could score our model’s
ability to make predictions as measured by some spe-
cific risk, a path that would lead to the general field
of Bayesian risk minimization (Berger, 1985). To keep

things simple here, lacking a specific risk, we judge
the quality of our predictive distribution by measur-
ing the relative entropy (Kullback-Leibler divergence)
between the true distribution and our predicted one:

KL[ν(X); p(X|q)] = Eν(X)

[
log

ν(X)

p(X|q)

]
= Eν(X)[log ν(X)]− Eν(X) [log p(X|q)] . (2)

Up to a constant outside our control (the continuous
entropy of the true distribution) this defines what we’ll
call the true predictive risk :

P[q]
def
= −Eν(X)

[
logEq(Θ)[p(X|Θ)]

]
. (3)

In many cases the true predictive risk is ultimately
what we care most about. Determining how accurately
we can predict the future, it is often what governs how
much money our model will make or how many lives
it will save.

Not knowing the true distribution ν(X), we cannot
directly minimize the true predictive risk. One thing
we can compute is the empirical predictive risk :

Pn[q]
def
= − 1

n

n∑
i

logEq(Θ)[p(xi|Θ)]. (4)

This is the observed average risk on the {xi}ni sam-
ple set. Akin to a training loss, the empirical predic-
tive risk is a measure of how well we do at predicting
the training data. If used as a target for optimization
we can easily overfit. Training with this risk directly
would amount to a type of ensemble method (Diet-
terich, 2000) or non-parametric mixture with mixing
distribution q(Θ) (Wang, 2007; Lindsay, 1995).

In contrast to the predictive risks, we’ll also define the
inferential risks which focus on determining or infer-
ring the correct values of the parameters. The true
inferential risk (often just called the true risk):

R[q]
def
= −Eν(X)

[
Eq(Θ) [log p(X|Θ)]

]
, (5)

and the corresponding empirical inferential risk (often
called the empirical risk):

Rn[q]
def
= − 1

n

n∑
i

Eq(Θ) [log p(xi|Θ)] . (6)

For a variety of reasons, directly minimizing the in-
ferential risk is fairly commonplace. It measures the
average of the divergence between the true distribu-
tion ν(X) and the single-value parameter settings of
the model p(X|θ). This is akin to doing variational
optimization (Staines and Barber, 2012), and concen-
trates on a delta function corresponding to the best
single-value parameter setting.
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Jensen’s inequality implies

− logEq(Θ)[p(x|Θ)] ≤ −Eq(Θ)[log p(x|Θ)]

and so the inferential risks are upper bounds on the
predictive risks:

P[q] ≤ R[q] and Pn[q] ≤ Rn[q]. (7)

In this way, minimizing the inferential risk is a valid
strategy for achieving good predictions since it mini-
mizes an upper bound on the predictive risk. When
is it a good strategy? When is this bound tight? An-
swer: If our model is well-specified (Masegosa, 2019)
(Proof replicated in appendix C.1). However, in cases
of model misspecification this can break down severely.
We would prefer to target the true predictive risk di-
rectly, but cannot since we do not know the true data
distribution. What we need is a tractable bound on
the true risks.

3 PAC-BAYES

While the empirical risks (P,R) provide unbiased es-
timates of the true risks (P,R), minimizing the em-
pirical risks do not minimize the true risks:

arg min
q
R[q] = arg min

q
E
[
Rn[q]

]
6= E

[
arg min

q
Rn[q]

]
.

Said another way, the empirical risks do not provide a
bound on the true risks.

Despite not being a valid bound, empirical risk mini-
mization is quite popular. Minimizing the empirical
(inferential) risk over the space of all possible dis-
tributions over parameters is the well known Max-
imum Likelihood method. This concentrates in a
delta-function-like parameter distribution with all of
its mass on the maximum likelihood parameter value.

We could similarly directly optimize the empirical
predictive risk, known to some as a non-parametric
mixture (Lindsay, 1995; Wang, 2007). In cases with
bounded likelihoods this seems to perform decently
well (e.g. the toy example of section 5) just as it
does in the case of Maximum Likelihood. If our model
is too expressive minimizing the empirical risks will
quickly start to concentrate on the empirical data dis-
tribution rather than the true distribution, overfitting
severely. Classic approaches prevent overfitting by lim-
iting model capacity; by adding regularization or other
tricks. If we instead had a valid bound on the true
risks, we needn’t worry. PAC-Bayes approaches pro-
vide such a bound.

We would really like to have some assurance that we
won’t overfit to our finite training data. We can formu-
late an upper bound on the true risks in terms of the

empirical risks that nearly always hold. Such probably
approximately correct (or PAC) bounds can be used to
motivate Bayesian inference, demonstrating that the
Bayesian posterior is the minimizer of a PAC-style up-
per bound on the true inferential risk R (Banerjee,
2006; Alquier et al., 2016; Guedj, 2019) (Proof repli-
cated in appendix C.2).

In light of these results we will define the following
PAC-inferential risk (or ELBO):

R̃n[q; r, β]
def
= Rn[q] +

1

βn
KL [q(Θ); r(Θ)]

= Eq(Θ)

[
− 1

n

∑
i

log p(xi|Θ) +
1

βn
log

q(Θ)

r(Θ)

]
. (8)

Aside from constants independent of q, R̃ is a stochas-
tic upper bound on R. Intuitively, this is accom-
plished by ensuring that our parameter distribution
q(Θ) can’t stray too far from a prior r(Θ) we chose
before looking at the data. Notice that ordinary
Bayesian inference corresponds to minimizing this risk
for β = 1 (Knoblauch et al., 2019; Bissiri et al., 2016).
Furthermore, as β →∞ we recover the empirical risk
R and thus Maximum Likelihood. This risk is well
known and widely used, both from previous work on
information theoretic bounds for statistical explana-
tion (Zhang, 2006; Alemi et al., 2016), and as the evi-
dence lower bound (ELBO) from work on Variational
Inference such as Kingma and Welling (2013).

Because P ≤ R, Bayesian inference is equivalent to
(almost always) minimizing an upper bound on the
true predictive risk P. In the case of a well-specified
model, minP = minR and Bayesian inference tar-
gets not only optimal inferential power but also opti-
mal predictive power. If you have the correct model,
searching for the correct single parameter setting of
the model is the right thing to do. Is this still the case
when the model is misspecified?

We adopt the definition of model misspecification used
in Masegosa (2019), namely that the true data gener-
ating distribution is not recoverable using a single pa-
rameter setting of the predictive model (ν 6∈ {`(·|θ) :
θ ∈ T }). If the true data generating distribution is
not measurable using a single parameter setting of
our model, then as the distribution over parameters
concentrates (as would happen when minimizing R or
R̃ with infinite data) we cannot recover a perfect ap-
proximation of the true data generating distribution.
Therefore, if you have a misspecified model, searching
for the best single parameter setting of that model is
not the right thing to do.

What ought we do if our model is misspecified?
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4 PACm-BAYES

If our model is misspecified, there may be a large gap
between the minimum of the predictive and inferential
risks (minP � minR) as we’ll demonstrate in our
experiments below.

Our central contribution is to provide a new class of
bounds, analogous to the PAC-style upper bounds on
the inferential risk but targeting the predictive risk
more directly.

The potential gap between the predictive and inferen-
tial risks came from invoking Jensen’s inequality:

− logEq(Θ)[p(x|Θ)] ≤ −Eq(Θ)[log p(x|Θ)]. (9)

The core insight is to explore a family of multisam-
ple stochastic bounds: (Burda et al., 2015; Mnih and
Rezende, 2016)

− logEq(Θm)[p(x|Θm)]

≤ −Eq(Θm)

log
1

m

m∑
j

p(x|Θj)


≤ −Eq(Θ)[log p(x|Θ)]. (10)

Averaging a finite number of samples from our param-
eter distribution provides an unbiased estimate of the
predictive likelihood. Taking the log of an unbiased
estimator produces a stochastic lower bound (Burda
et al., 2014; Grosse et al., 2016) that becomes tight
asymptotically.

Our main result is in theorem 1 (below) and theorem 2
(appendix). This PAC-Bound establishes that we are
free to minimize the empirical predictive risk for any
finite m, without fear of overfitting, provided we si-
multaneously ensure that our parameter distribution
remains close to some prior r(Θ) which we specified
independent of the data and which offers a reasonable
explanation of our prior beliefs as to the model pa-
rameters in the absence of evidence. This is nearly
always an upper bound on the true risk with a gap ψ
(eq. (14)), a term which measures the discrepancy be-
tween true and empirical inferential risks (∆, eq. (15))
if we drew parameter values from our prior. Cru-
cially, ψ is independent of q(Θ) and can be disre-
garded from optimization. We further show (Theo-
rem 2, Appendix C.3) that under certain assumptions,
ψ is bounded and therefore Theorem 1 is non-vacuous.
If βnm = O(1) then ψn = o(n). Because computational
complexity increases with m, asymptotic analysis of m
is not relevant. Nevertheless were we to consider large
m, then ψm,n = O(m) when βnm = O(m−1) and at
best, ψm,n = O(logm) when βnm = O(m−1

√
logm).

For more discussion and analysis see appendices B.2
and C.3.

This yields our proposed risk, P̃n,m (eq. (13)). Min-
imizing P̃n,m (eq. (13)) is equivalent to minimizing
a stochastic upper bound on the true predictive risk
P, analogous to the relationship between R̃ and R.
See theorem 1 for a complete proof, though it follows
directly from the traditional PAC-Bayes proof once we
invoke the multisample bound. Furthermore, as we in-
crease m, PACm decreases (eq. (12)).

Dropping ψ (being constant in q, though there is a lot
of nuance here, see appendices B.2 and C.3), we can
summarize the relationships between the risks as:

P . P̃n,m ≤ P̃n,1 = R̃n & R ≥ P. (16)

The R̃n & R relationship is the classic PAC-Bayes re-
sult (Alquier et al., 2016), R ≥ P follows from Jensen’s
inequality (Masegosa, 2019), and the left hand side
P . P̃n,m ≤ P̃n,1 = R̃n is our contribution.

Masegosa (2019) identified the need for tighter bounds
on predictive risks than R, suggesting a family (PAC2

T )
of risks that utilize a second order Jensen bound.
While estimating the variance term in PAC2

T requires
care, PACm is minibatch friendly, having its expecta-
tion over the parameter distribution outermost in the
objective. Later in our experiments we directly com-
pare these approaches.

We now have two knobs we can use to adjust our risk:
m, the number of samples we use to estimate the pre-
dictive distribution and β, a sort of inverse temper-
ature used for adjusting the relative strength of the
likelihood and prior terms. For m = 1 we recover the
(inferential) risks we are used to, but form ≥ 1 we may
form tighter bounds on the true predictive risk. With
β = 1 we recover traditional Bayesian inference with
an equal weighting of the likelihood and prior terms,
as β → ∞ we recover purely empirical risks. For any
β, including β ≤ 1 we still maintain our stochastic
bounds. Downweighting the KL term with respect to
the prior, or cold posteriors has shown to be useful
especially in the context of neural networks (Wenzel
et al., 2020).

What do realizations of PACm look like in practice? In
practice it amounts to a very simple change to exist-
ing variational Bayesian approaches. As can be seen
in figs. 11 and 12, this can be a one line change, chang-
ing an expectation over draws from the variational pos-
terior with a logsumexp. Instead of scoring the average
log likelihood of m draws from a variational posterior,
we instead score the log of the average likelihood across
m draws from a variational posterior.
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Theorem 1. For all q(Θ) absolutely continuous with respect to r(Θ), Xn iid∼ ν(X), β ∈ (0,∞), n,m ∈ N,
p(x|θ) ∈ (0,∞) for all {x ∈ X : ν(x) > 0} × {θ ∈ T : r(θ) > 0}, and ξ ∈ (0, 1), then with probability at least
1− ξ,

P[q] ≤ P̃m,n[q; r, β] + ψ(ν, β,m, n, r, ξ)− 1
βmn log ξ (11)

and furthermore (unconditionally),

P̃m,n[q; r, β] ≤ P̃m−1,n[q; r, β] ≤ P̃1,n[q; r, β] = R̃n[q, r, β] (12)

where:

P̃m,n[q; r, β]
def
= − 1

n

n∑
i

Eq(Θm)

log

 1

m

m∑
j

p(xi|Θj)

+
1

βn
KL [q(Θ); r(Θ)]

def
= PACm (13)

ψ(ν, β,m, n, r, ξ)
def
= 1

βmn logEν(Xn) Er(Θm)

[
eβnm∆(Xn,Θm)

]
(14)

∆(Xn,Θm)
def
=

1

n

n∑
i

log

 1

m

m∑
j

p(Xi|Θj)

− Eν(X)

log

 1

m

m∑
j

p(X|Θj)

 . (15)

Proof. Proof in appendix C.3. Sketch: form a multisample bound on the predictive risk and apply the traditional
PAC-Bayes bound.

5 AN ILLUSTRATIVE TOY
EXAMPLE

Consider trying to fit a Normal distribution to a set of
observations with a fixed unit variance but unknown
mean:

p(x|θ) = Normal(x; θ, 1) = (2π)−
1
2 e−

(x−θ)2
2 . (17)

Imagine further that we are operating in a severe
model misspecification regime. While our model is a
unit variance Normal distribution, the true data dis-
tribution is a 30-70 mixture of two Normals with twice
the standard deviation and separated by four times
their standard deviation.

In fig. 2 (left) we show the predictive distributions that
result from minimizing all of the risks discussed pre-
viously. In fig. 2 (right) we show the corresponding
parameter distributions. The true data distribution is
shown with the dark red curve in fig. 2 (left). The dark
red tick marks on the axis show five (n = 5) samples
which we took as our data. The fig. 2 caption lists the
resulting KL divergences between the true data distri-
bution and each of the found predictive distributions.

MinimizingR (eq. (6)) is equivalent to Maximum Like-
lihood (grey curves), which concentrates its parameter
distribution to a delta-function located at the empiri-
cal mean, and whose predictive distribution is simply
a unit variance Normal distribution centered at that
empirical mean.

Minimizing R̃ (eq. (8), aka ELBO) is equivalent to

Figure 2: Toy Example: The top plot shows the result-
ing predictive distributions. The bottom plot shows the
learned parameter distributions. Please see accompanying
text for a full explanation. Measured in bits, the KL di-
vergences between the true distribution and each method
are: R : 12., R̃ : 9.6,R : 10.0,P : 0.5, P̃ : 0.38,P : 0.0

Bayesian inference (blue curves). Here, we used a
weakly informative Normal(0, 92) prior. This risk pre-
vents the parameter distribution from collapsing onto
a delta function, but the resulting predictive distribu-
tion is quite similar to the one we found with Max-
imum Likelihood. It is still fundamentally unimodal
as minimizing R̃ is still fundamentally looking for the
best single parameter setting of our model.
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Minimizing R (eq. (5)) is equivalent to Bayesian infer-
ence with infinite data (black curve). Here again our
parameter distribution concentrates on a delta func-
tion, this time at the true distributions mean, but the
resulting predictive distribution is the best single pa-
rameter setting we could achieve, a unimodal predic-
tive distribution that doesn’t match the true distribu-
tion all that well. Notably, in this case it gives worse
predictions than R̃.

In contrast, minimizing the predictive risks (warm col-
ors) do not look for single parameter settings of the
model. Minimizing P (eq. (4)) performs a sort of
clustering of the data (yellow curve). While it might
seem natural to allow each data point its own delta-
like contribution in the parameter distribution, two of
our samples are near enough that we achieve better
empirical predictive risk by combining the two points
into a single contribution to the parameter distribution
with twice the weight but located at the two points’
mean. The resulting predictive distribution remains
multimodal and achieves a much lower divergence with
respect to the true distribution (0.5 bits versus the
∼ 10 bits for the traditional (inferential) risks).

Minimizing P̃ (eq. (13), aka PACm, here with m →
∞ see appendix E.2) has a similar qualitative effect
compared to the corresponding inferential case (R̃).
The addition of the KL penalty with respect to some
prior (here the same as used in the Bayesian case)
prevents the parameter distribution from collapsing to
a delta-comb.

Finally, in this case, even though we have rather gross
model misspecification in the sense that our model
p(X|Θ) is quite unlike the true distribution for any sin-
gle value of Θ, our true distribution can be expressed
as an infinite mixture of our model. Minimizing the
true P (eq. (3)) can achieve perfect predictive perfor-
mance (red curve). This is achieved with a bimodal
Normal distribution in parameter space which when
convolved with our Normal model gives the exact bi-
modal Normal data distribution we chose. This is also
what we achieve asymptotically from P̃ in the limit of
infinite data.

This toy example illustrates how and when we can
hope to achieve better predictive performance from
P, P̃ than from R, R̃. Namely, if some mixture of our
model can get closer to the true distribution than the
best single setting of the parameters, we expect ap-
proaches that target the predictive risks to outperform
the inferential risks by a corresponding margin.

6 RELATED WORK

The work most closely related to the PACm bound is
the PAC2

T bound presented in Masegosa (2019). PAC2
T

is based on a second order Jensen tightening of P.
While clearly instrumental to our work, PAC2

T has a
number of defects which PACm remedies. First, the
variance tightening term in PAC2

T is non-degenerate
only for bounded likelihoods; PACm has no such re-
striction. Second, the PACm risk, by directly target-
ing predictive risk satisfies the golden rule; the same
cannot be said for PAC2

T . Finally, in the experiments
below we demonstrate that PACm generally matches or
exceeds the test-set performance of PAC2

T ; as expected,
both generally outperform ELBO.

The PACm proofs leverage multisample insights from
the IWAE work (Burda et al., 2015). In response,
Rainforth et al. (2018) question the utility of these
tighter class of bounds and demonstrate that tighter
bounds on the marginal evidence do not help learn
useful posteriors. This valuable insight does not apply
to PACm because our bound is not on the evidence
marginal p({xi}ni ) = Er(Θ)[

∏n
i p(xi|Θ)] but rather

on the posterior predictive distribution, p(X|{xi}ni ) =
Eq(Θ|{xi}ni )[p(X|Θ)]. In fact, in the limit m → ∞
we already explicitly encode the idea that the actual
Bayesian posterior is not directly useful.

PACm offers real benefits in predictive performance in
cases of model misspecification, in particular, when a
mixture of our model family would be a better predic-
tive model than the model itself. If so, why not simply
fit mixture models? This certainly does work, as fig. 7
demonstrates. Mixtures have proven difficult to fit in
general (Morningstar et al., 2020). The PACm family
of risks subsume classic risks and offer theoretical gen-
eralization guarantees in cases of model misspecifica-
tion, while remaining computationally tractable. For
more discussion of the differences between mixtures of
various sorts, please see appendix B.

7 EXPERIMENTAL RESULTS

Here we demonstrate that our new risk: PACm, can
achieve better predictive performance on a suite of
tasks. In all experiments, we compare the PACm-
Bayes risk (P̃) to alternative objectives, including the
PAC-Inferential Risk (R̃), also called the Evidence
Lower Bound (ELBO), since it is a lower bound on
the marginal likelihood. We also compare to alterna-
tive PAC-style bounds on the predictive risk, namely
the PAC2

T objective proposed in Masegosa (2019).

Toy Experiments: We start with a series of three
simple regression tasks designed to test three differ-
ent flavors of model misspecification. The first task
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is to predict data from a sinusoidal model when the
variance is underestimated. The second task is to pre-
dict data from a sinusoidal model with heteroskedas-
tic noise, where we have assumed homoskedastic noise.
The third task is to predict data from a mixture, as-
suming a unimodal posterior and likelihood. For all
models we used 104 draws from our data generating
distribution as training points, and fit the data using
a 3 layer MLP with 40 hidden units. We used nor-
mal prior and posterior distributions over parameters,
and a normal distribution with fixed variance for the
likelihood. Full details of the predictive models and
training procedures can be found in the supplement.

We show the predictive models along with the data
in Figure 3. Our first observation is that in all three
cases, optimizing the ELBO objective leads to a poor
predictive model. This is expected behavior. Here,
because the number of training points is fairly large,
ELBO causes the posterior predictive distribution to
concentrate on the (true) mean of p(y|x). Because the
variance is underestimated, errors in the prediction
of the mean are penalized more aggressively, exacer-
bating this concentration. In other words, incorrect
specification of the model leads to increasingly over-
confident (but wrong) predictions when training with
ELBO. The worst-case scenario of this can be seen in
the mixture experiments, when the mean of the data
is often not a reasonable prediction of any of the data.

Our second observation is that while PAC2
T does a

marginally better job of accounting for the observed
uncertainty (its predictive distribution is slightly wider
than ELBO), it still underpredicts the variance of the
data. We appear to observe that this loss results in
the model expanding the tails of its predictive distri-
bution to account for the observed variance. At the
same time, it is clear that PAC2

T still tends to concen-
trate its predictions on the mean of the data.

Experiment ELBO PAC2
T PACm

Sinusoid 46.2 2.2 0.2
Heteroskedastic 20.33 1.16 0.03
Mixture 14.21 11.57 0.15

Table 1: KL divergences between the learned posterior
predictive model and the true predictive model. These
were each computed using 1000 samples from the learned
surrogate posterior distribution.

In all cases, we observe that PACm results in a bet-
ter predictive distribution than the alternatives. We
quantitatively assess the performance using the KL-
Divergence between the posterior predictive distribu-
tion, and the true generative distribution. These are
presented in Table 1. In all cases, ELBO performs
the worst, while PAC2

T performs better and PACm per-

forms best. Interestingly, we see in Figure 3 that PACm

recovers the multimodal posterior predictive distribu-
tion, despite the model having a unimodal posterior,
prior, and likelihood. This indicates that the surrogate
posterior learned by PACm is in some sense richer than
that learned by ELBO, since it appears to exploit the
architecture of the network in order to use its unimodal
posterior to model multimodal data. To assess if this
improvement can be simply replicated by using a more
expressive posterior, we repeated the mixture experi-
ment using a Mixture of Independent Normal distri-
butions for the posterior in fig. 5. Here also, we find
that PACm results in a better approximation to the
true predictive model, having a lower KL divergence
from the generative distribution (KL = 0.63) than the
alternatives (KL = 14.19 for ELBO and KL = 9.09 for
PAC2

T ). We also verify that all models perform well
when the model is well specified in fig. 7, which for
the mixture problem would mean having a two com-
ponent likelihood.

Structured Prediction: We also test our objective
on structured prediction tasks (e.g. Sohn et al., 2015).
For this, we train a Bayesian neural network to predict
the bottom half of an image, using only the top half as
an input. We test this on 3 different image datasets:
MNIST (LeCun, 1998), FashionMNIST (Xiao et al.,
2017), and CIFAR-10 (Krizhevsky, 2012). For our
likelihood, we use a Normal distribution where each
pixel is considered independent. Following Masegosa
(2019), we further fix the scale of the likelihood distri-
bution to 1/255. These choices are interesting for two
reasons. First, this setup also replicates the training
setup which is often employed in training naive Vari-
ational Autoencoders (see e.g., Kingma and Welling,
2013; Tomczak and Welling, 2018), where the output
variance is either fixed or shared between pixels (for
non binarized images) and where all output pixels are
assumed to be independent. Second, this setup is a
misspecified model since we know that the pixels in
the data are not independent, at least not at the gran-
ularity which we are able to capture in most models.
We therefore hypothesize that PACm should be able to
offer improvements in predictive performance.

We train models and measure performance as a func-
tion of m and the loss function used in training. For
each value of m and each loss, we conduct 5 tri-
als with different initializations to estimate the un-
certainty in our final test set negative log-posterior-
predictive probability. We show the results in Figure 4.
We find that the performance of ELBO is roughly static
in m, with much of the observed variation consistent
with noise. This is consistent with our expectation. In
contrast, PAC2

T and PACm exhibit rapid improvement
in performance with m, showing that the model is,
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Figure 3: A comparison between ELBO, PAC2
T , and PACmBayes on three different toy regression problems where the model

is misspecified. Datapoints are shown in red, and the black contours show the posterior predictive distribution learned
by training with the loss indicated at the top of the corresponding column. Each row covers a different data generation
process and each column covers a different training loss. All experiments use the same model family, computation,
and optimization procedure, and only differ in their loss. Despite this, PACm correctly approximates the predictive
distribution, while ELBO and PAC2

T significantly underpredict the variance of the data in the first two cases, and do not
correctly predict the modes of the output in the last case.

in fact, misspecified and that these models are there-
fore able to offer meaningful improvement in predic-
tive performance. Interestingly, we also appear to ob-
serve a saturation in m when the number of samples
approaches the size of the batch. This could occur
for two reasons. First, as we show in theorem 2, the
model may ultimately cease to improve in m because
the increasing value of ψ may overcome the tighten-
ing of P̃. Alternatively, this could be due to empiri-
cal variance in the gradients introduced by minibatch
training. This is similar to the findings from Rainforth
et al. (2018) who showed that variance in the gradi-
ents results in an impedance to effective learning which
eventually overcomes tightness. Alternative gradient
estimators such as that from Tucker et al. (2018) may
help to solve this issue.

Classification: So far, we have experimented with
models where the likelihood was either purposefully
misspecified in order to highlight the generalization
gap introduced by minimizing R̃ compared to PACm

or where we expect that it is misspecified because the
assumptions we make about the output data are likely
to be incorrect (e.g. pixels are likely non-independent
in most images). It is unclear the degree to which
this is an issue for many real-world applications where
we use highly expressive deep neural network models,
but in many cases we are still forced to make incorrect
modeling assumptions for the sake of convenience.

It is equally interesting to consider the performance of
PACm when the likelihood is well specified, but when

other parts of the Bayesian model (the prior) are not.
A good example of such a scenario is image classifi-
cation, where we expect that a categorical distribu-
tion is a reasonable choice of likelihood. To test this
scenario, in appendix D we present additional experi-
ments where we use Bayesian convolutional neural net-
works to classify images from the datasets used in the
previous section. We consider two cases: (1) being
Bayesian over the weights of the model (the “global”
variables), or (2) being Bayesian over the activations
of the model (the “local” variables). This latter case
has been explored in works such as Alemi et al. (2016).
Here we consider the same approach, except where we
minimize a PAC-Bayesian bound on the predictive like-
lihood.

As we expect, for classification problems, we find that
though the model appears to be mostly well-specified,
PACm learns models that make better predictions at
the same cost, measured in terms of the KL divergence
between the posterior and the prior.

8 CONCLUSION

Something as simple as a one line change to a vari-
ational Bayes setup can have drastic effects. Swap-
ping an expected log likelihood across multiple draws
from a variational posterior with the log of the ex-
pected likelihood can vastly improve the predictive
performance of badly misspecified models (summa-
rized in appendix A). In this work we attempted to
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Figure 4: Test set log-posterior-predictive, relative to the mean log-posterior-predictive recovered using ELBO. Black
points show models trained using ELBO, while red points show models trained using PACm and blue points show models
trained with PAC2

T . The x-axis shows the number of samples used in computing the loss (m). We see that PACm appears
to offer the best log-posterior-predictive, but that performance either saturates or degrades as the sample number becomes
to large, indicating issues with the optimization procedure.

explain this phenomenon.

Bayesian inference minimizes a stochastic upper bound
on the predictive risk but the tightness of this bound
is limited by model misspecification. In this work we
proposed PACm, a new bound that directly targets
predictive risk. We demonstrated that PACm outper-
forms ELBO and PAC2

T (Masegosa, 2019) on misspec-
ified Bayesian models on a wide set of example prob-
lems.
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A Quick Reference: Comparing Different Losses

Here we depict several losses closely related to PACm and highlight their structural similarities and differences.
The likelihood is p(y|Z) and the prior/posterior discrepancy term is r(Z)

q(Z) .

ELBO def
= −Eq(Zm)

 1

m

m∑
j

log

(
p(y|Zj)

)
+

1

m

m∑
j

log

(
r(Zj)

q(Zj)

)
PACm

def
= −Eq(Zm)

log

(
1

m
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j

p(y|Zj)

)
+

1

β

1
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j

log

(
r(Zj)

q(Zj)
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IWAE def

= −Eq(Zm)

log

(
1

m

m∑
j

p(y|Zj)
r(Zj)

q(Zj)

)
PAC2

T
def
= ELBO− Eq(Zm) [SampleVariance(y, Zm)]

Where we colored the average-log, log-average terms, re-framed all losses in terms of multiple samples, and where:

• ELBO is the evidence lower bound (as a loss). (Blei et al., 2017)

• IWAE is the importance weighted autoencoder loss of Burda et al. (2015).

• PAC2
T is the loss of Masegosa (2019).

B FAQ

Below we informally address some readers’ questions.

B.1 Why did you choose the names predictive and inferential risk?

These terms serve to distinguish between making the best prediction vs choosing the best model parameters.
We chose the name predictive risk risk because this term corresponds with (among other things) the posterior
predictive distribution. The term inferential risk was chosen to reflect a judgement of the likelihood of model
parameters. While we realize that the machine learning community sometimes uses inferential risk in contexts
which we call predictive risk, we felt that our use of the term has precedent in statistics and is therefore not
unreasonable.

B.2 Is the bound non-vacuous?

For any fixed m: no. When m is fixed we have a slack term in our PAC bound similar to that seen in most other
PAC bounds. As we show in appendix C.3, the bound slack can grow at best like o(logm) or–as we’ve opted
in the paper–like o(m). (If the bound grew in some polynomial of n this would indeed be a worrisome, if not
vacuous result.)

The reason it is “ok” that the bound slack grows in m is because taking the limit of m→∞ is not an interesting
nor recommended limit. Recall that the Bayesian formalism stipulates that m = 1 and that if the model is
well-specified, the Bayesian posterior is optimal. Choosing m > 1 serves only as a stopgap to improve–but not
cure–poor predictive risk guarantees due to the misspecified regime.

We believe that “relaxing” the Bayesian posterior in the sense of m > 1 is a valuable contribution to the ML and
statistics communities because it is a small step toward bridging the impressive predictive performance of the
frequentist methodology with the impressive explainability/transparency of the Bayesian methodology.
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B.3 Can we recover the correct parameter value, if one exists?

This question–while very interesting–is intentionally out of scope for this research. One technique to answer
this question would be to explore the asymptotic consistency/efficiency similar to the LeCam style proofs of
maximum likelihood. However this would be a very different set of tools than the PAC approach and carry its
own set of worries. I.e., “is asymptotic analysis ’reasonable?” ’ and “are typical regularity assumptions justified
in the deep learning era?”

B.4 How is PACm different from using a mixture posterior?

The PACm loss could work on top of a mixture posterior (or not). That is, PACm simply repeatedly samples
from whatever posterior family is being fit. We illustrate this in fig. 5.

In general one should expect better performance from either ELBO or PACm when using a richer posterior family.
However, as our experiments and analysis shows, ELBO predictive risk is more sensitive to misspecification in
the likelihood and/or prior.

B.5 How is PACm different from using a mixture likelihood?

The PACm loss is used to identify a distribution over the likelihood parameters, be the a likelihood mixture
distribution or otherwise. In this sense, using a mixture likelihood and using PACm are largely orthogonal
changes to the modeling setup, though they can be done to accomplish the same objectives.

That said, PACm seems to be particularly helpful when the likelihood and/or posterior family lacks the capacity
to capture multimodality present in the data. Compare the results in fig. 3 to the results in appendix D.2. Taking
the same misspecified model and switching to the PACm objective is enough to fit multimodal data well. Fitting
a proper mixture model (as in modifying the likelihood to have two components) to the multimodal data works
correctly as shown in appendix D.2. In this case the model is well specified. Details for this experiment can be
found in appendix E.4. Note that when switching from the misspecified unimodal model to the well specified
mixture we have increased the number of parameters in our model, additional parameters for our variational
posterior to approximate. For a simple problem like this one, having our variational posterior predict two means
instead of one isn’t much of an additional cost, but for larger Bayesian models like Bayesian neural networks the
additional burden of fitting the mixture is hard to ignore.

Overall, switching from a model to a mixture model is changing the structure of the model. Switching from
ELBO to PACm is simply changing the loss. That simply changing the loss of a misspecified model can recover
a lot of the predictive benefits of the much larger mixture model is the primary benefit PACm brings.

To further highlight the distinction, consider the choices you would have to make to a Bayesian mixture in order
to recover the PACm objective. Starting with a mixture likelihood (m component likelihoods pj with mixing
weights wj), and the ELBO objective:

−Eq(Z)

log

 m∑
j

wjpj(y|Z)

+
1

β
log

r(Z)

q(Z)

 ,
we will have to structure our mixture so that the parameters are non-overlapping. Let Zm = [Z1, Z2, . . . ] denote
the partition of all the component’s parameters and choose a prior that factorizes in the same way:

−Eq(Zm)
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log
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 .
One would now have to fix the mixture probabilities to be uniform (wj = 1

m ) and ensure that each of the mixture
components were replications of same model (pj = p):
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Further, not only would the distributional form of the variational approximation for each of the components have
to be the same, but the parameters would have to be shared, i.e. the exact same variational posterior would be
used for the parameters of each component of the mixture. This would generate the same objective as PACm

(after rescaling β) at the cost of severe and specific choices. Instead, as we demonstrated, starting with a single
mismatched model and simply targeting the predictive rather and inferential risks is a better way to arrive at
PACm and a principled way to fit misspecified Bayesian models.

B.6 How is PACm different than training an ensemble?

Ordinarily when people train an ensemble they minimize the Empirical Inferential Risk (R) multiple times
independently, and then average the predictions of the resulting point estimates. By targeting an inferential risk,
this won’t address misspecification in the way PACm can. One could target the Empirical Predictive Risk (P)
directly, this is known as a non-parameteric mixture. For certain models this can perform quite well, but for
rich enough model families this can severely overfit. PACm adds the KL regularization term that can prevent
overfitting.

B.7 How is PACm different than IWAE?

IWAE gives a bound on the marginal likelihood, not the predictive distribution. Summarized in appendix A
practically the difference is in how the ratio of the prior and posterior densities contributes. IWAE attempts to
bound the marginal likelihood, in other words the prior predictive likelihood. PACm is a bound on the posterior
predictive likelihood.

C Proofs

This section proves our main theoretical result (theorem 1) as well as presents additional theory relevant to
PACm.

C.1 Relationship Between Predictive and Inferential Risks In the Presence of Model
Misspecification

The following two results are adapted from Masegosa (2019) to our notation and given here for the reader’s
convenience. These results examine conditions under which solutions to the inferential risk, minq(Θ)R[q], are
equivalent to solutions to the predictive risk, minq(Θ) P[q]. That is, these lemmas show that model misspecification
introduces a gap between predictive risk (P) and inferential risk (R). This gap is potentially problematic because
machine learning practitioners care about P but minimize (an approximation of) R.
Lemma 1. arg minq(Θ)R[q] ≡ arg minq(Θ) P[q] only if for any distribution ρ over Θ,

KL[ν(X); p(X|θ(ml))] ≤ KL[ν(X);Eρ(Θ)[p(X|Θ)]],

and q(ml)(Θ) = arg minq(Θ)R[q] ≡ δ(Θ− θ(ml)) where δ is the Dirac-delta distribution.

Proof. (Sketch.) Note that,

P[q] = KL[ν(X),Eq(Θ) p(X|Θ)] + H[ν(X)]

≤ Eq(Θ) KL[ν(X), p(X|Θ)] + H[ν(X)]

= R[q]

where the inequality is Jensen’s. Since the theorem condition implies R[q∗] ≤ P[q] then R[q∗] ≤ minq P[q] ≤
R[q∗] and the claim follows. (See Lemma 2 of Masegosa (2019) for original proof; our sketch is based on a
sandwich argument.)

Lemma 2. If there exists a density ρ over Θ such that

KL[ν(X);Eρ(Θ)[p(X|Θ)] < KL[ν(X); p(X|θ(ml)],
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then a minimizer of R is not a minimizer of P where

q(ml)(Θ)
def
= arg min

q(Θ)

R[q] ≡ δ(Θ− θ(ml)),

where δ is the Dirac-delta distribution.

Proof. (Sketch.) The condition of this lemma implies that q(ml)(Θ) cannot be a minimizer of P however it is the
minimizer of R. (See Lemma 3 of Masegosa (2019) for original proof.)

C.2 PAC-Bayes Relationships

This section presents two well-known PAC-Bayes results as special cases of theorem 1.

Corollary 1. Under the conditions of theorem 1, then with probability at least 1− ξ, P[q] ≤ R̃n[q; r, β] + ψ1.

Proof. Immediate from theorem 1 when m = 1.

Corollary 2. The Bayesian posterior p(Θ|{xi}ni ) ∝ r(Θ)
∏n
i p(xi|Θ) minimizes PACm when m = β = 1.

Proof. PACm is equivalently PAC when m = β = 1 for which the claim is proven by Germain et al. (2016).

C.3 PACm-Bayes Theory

Theorem 1. For all q(Θ) absolutely continuous with respect to r(Θ), Xn iid∼ ν(X), β ∈ (0,∞), n,m ∈ N,
p(x|θ) ∈ (0,∞) for all {x ∈ X : ν(x) > 0} × {θ ∈ T : r(θ) > 0}, and ξ ∈ (0, 1), then with probability at least
1− ξ,

P[q] ≤ P̃m,n[q; r, β] + ψ(ν, β,m, n, r, ξ)− 1
βmn log ξ (18)

and furthermore (unconditionally),

P̃m,n[q; r, β] ≤ P̃m−1,n[q; r, β] ≤ P̃1,n[q; r, β] = R̃n[q, r, β] (12)

where:

P̃m,n[q; r, β]
def
= − 1

n

n∑
i

Eq(Θm)

log

 1

m

m∑
j

p(xi|Θj)

+
1

βn
KL [q(Θ); r(Θ)]

def
= PACm (13)

ψ(ν, β,m, n, r, ξ)
def
= 1

βmn logEν(Xn) Er(Θm)

[
eβnm∆(Xn,Θm)

]
(14)

∆(Xn,Θm)
def
=

1

n

n∑
i

log

 1

m

m∑
j

p(Xi|Θj)

− Eν(X)

log

 1

m

m∑
j

p(X|Θj)

 . (15)

Proof. Write:

g(Θm;X)
def
=

1

m

m∑
j

p(X|Θj)

Gn,m[q]
def
= − 1

n

n∑
i

Eq(Θm) [log g(Θm;xi)]

Gm[q]
def
= −Eν(X) Eq(Θm) [log g(Θm;X)]

For the first claim:
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Jensen’s inequality implies

− logEq(Θm) [g(Θm;X)] ≤ Eq(Θm) [− log g(Θm;X)] .

Applying Eν(X) to both sides implies P[q] ≤ Gm[q].

To complete the proof of the first claim, we now show

p(Gm[q] ≤ P̃n,m[q; r, β] + ψn,m) ≥ 1− ξ.

Make the substitution, f(Θm; {xi}ni )
def
= βmn∆({xi}ni ,Θm) (for some non-stochastic βmn) to Lemma 3

(“Compression Lemma”) and rearrange:

−Eq(Θm) Eν(X)[log g(Θm;X)] ≤ −Eq(Θm) Eν(X|{xi}ni )[log g(Θm;X)]

+ 1
βmn KL[q(Θm), r(Θm)] + 1

βmn logEr(Θm)

[
eβmn∆({xi}ni ,Θ

m)
]
.

For the KL term, note that Lemma 5 (“KL-divergence iid”) implies

KL[q(Θm), r(Θm)] = mKL[q(Θ), r(Θ)].

For the rightmost term (a log moment generating function conditioned on {xi}ni ), make substitutions
Z

def
= Er(Θm)[e

βmn∆({xi}ni ,Θ
m)] and p def

= ν(Xn) to Lemma 4 (“Log Markov Inequality”) to conclude:

νXn
(

logEr(Θm)

[
eβmn∆(Xn,Θm)

∣∣∣Xn
]
≤ logEν(Xn) Er(Θm)

[
eβmn∆(Xn,Θm)

]
− log ξ

)
≥ 1 − ξ.

Scale the inner inequality by 1
βmn (which doesn’t change the probability) and combine this result with

the previous two to prove the first claim.

(This proof was inspired by Masegosa (2019).)

For the second claim:

Note that the KL terms of P̃n,m and R̃n are not functions of m and can be ignored. The equality
P̃n,1[q; r, β] = R̃n[q, r, β] is true by definition; g(Θ1;X) = p(X|Θ). To complete the proof it is sufficient
to show Gn,m ≤ Gn,m−1. I.e.,

Gn,m[q] = − 1

n

n∑
i

Eq(Θm)

log
1

m

m∑
j

p(xi|Θj)


= − 1

n

n∑
i

Eq(Θm)

log
1

m

m∑
j

1

m− 1

m∑
k 6=j

p(xi|Θk)


≤ − 1

m

m∑
j

1

n

n∑
i

Eq(Θm)

log
1

m− 1

m∑
k 6=j

p(xi|Θk)


=

1

m

m∑
j

Gn,m−1[q]

= Gn,m−1[q].

The inequality is Jensen’s and the second-to-last equality follows from Θm being independent.

(This proof is inspired by Burda et al. (2015).)
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While Theorem 1 is technically true, additional assumptions are needed to ensure it is nonvacuous, i.e.,
ψ(ν, β,m, n, r, ξ) < ∞. Theorem 2 (below) affirms this is the case when ∆(X, θ) is everywhere s2-sub-gaussian
for all {θ ∈ T : r(θ) > 0} and furthermore suggests that:

• βn = O(1) implies ψn = O(1)

• βm,n = O(1) implies:

ψm,n = O(m) (Larger slack.) (19)

(βn)−1KL = O(n−1) (Weaker q regularization.) (20)

(βnm)−1 log ξ = O(m−1n−1) (Faster error decay.) (21)

• βm,n = O(m−1) implies:

ψm,n = O(logm) (Smaller slack.) (22)

(βn)−1KL = O(mn−1) (Stronger q regularization.) (23)

(βnm)−1 log ξ = O(n−1) (Slower error decay.) (24)

We emphasize that sub-gaussianity is only assumed for n = m = 1, yet our proof holds for n,m ≥ 1. This
assumption is similar to that made by Germain et al. (2016), however we assume ∆(X, θ) is everywhere sub-
gaussian whereas they assume ∆(X,Θ) is jointly sub-gaussian. We note that their Corollaries 4 and 5 (the
relevant claims) have incorrect proofs which do not obviously follow from joint sub-gaussianity; our Theorem 2
with m = 1 serves as a correction and also explains the different technical assumption. As also indicated in
Germain et al. (2016), our ψ’s finiteness is also provable by stronger assumptions, e.g., p(x|θ) ∈ [a, b] where
a, b ∈ R≥0 and for all {x ∈ X : ν(x) > 0} × {θ ∈ T : r(θ) > 0}. (Catoni, 2007; Alquier et al., 2016) However, we
refain from making such claims, preferring the arguably more general assumptions of Theorem 2.
Theorem 2. Making the assumptions of Theorem 1 and additionally that for all {θ ∈ T : r(θ) > 0}, ∆(X, θ) is
sub-gaussian with standard deviation 0 < sθ ≤ s <∞, i.e., logEν(X)

[
eλ∆(X,θ)

]
≤ 1

2s
2
θλ

2 ≤ 1
2s

2λ2, then:

ψm,n = 1
βmn logEν(Xn) Er(Θm)

[
eβmn∆(Xn,Θm)

]
(25)

≤ 1
2s

2βm+

(
1 +

1

βm

)
logm. (26)

Additionally,
β∗ = m−1s−1

√
2 log max(e,m), (27)

minimizes eq. (26) for m > 1 and is a constant when m = 1, i.e., eq. (26) at β∗ is,

ψn,m ≤
s√
2

(
(log max(e,m))

1
2 + (log max(e,m))

− 1
2

)
+ logm = O(logm). (28)

Proof. Begin by noting that,

∆(x, {θj}mj )
def
= log

1

m

m∑
j

p(x|θj)− Eν(X)

log
1

m

m∑
j

p(X|θj)

 (29)

≤ max
{

log p(x|θj)
}m
j
− Eν(X)

log
1

m

m∑
j

p(X|θj)

 (30)

= max

{
log p(x|θj)− Eν(X)

[
log

1

m

m∑
k

p(X|θk)

]}m
j

(31)

≤ max
{

log p(x|θj)− Eν(X) [log p(X|θj)]
}m
j

+ logm (32)

= max
{

∆(x, θj)
}m
j

+ logm. (33)
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The first inequality follows from the upper bound in Lemma 9. The second inequality follows from the negative
of the lower bound in Lemma 9, i.e.,

− log
1

m

m∑
k

p(X|θk) ≤ −max{log p(x|θj)}mj + logm ≤ − log p(x|θk) + logm,

for all k ∈ {1, . . . ,m}.

Combining this fact and the fact that emax{aj}mj = max{eaj}mj ≤
∑m
j e

aj , implies:

e
λ
n∆(x,{θj}mj ) ≤ e

λ
n

(
max

{
∆(x,θj)

}m
j

+logm

)
(34)

= m
λ
n max

{
e
λ
n∆(x,θj)

}m
j

(35)

≤ m λ
n

m∑
j

e
λ
n∆(x,θj). (36)

Combining this fact with the everywhere sub-gaussianity of ∆(X, θ) implies:

logEν(Xn) Er(Θm)

[
eλ

1
n

∑n
i ∆(Xi,Θ

m)
]

(37)

= logEr(Θm)

[
n∏
i

Eν(X)

[
e
λ
n∆(X,Θm)

]]
(38)

= logEr(Θm)

[(
Eν(X)

[
e
λ
n∆(X,Θm)

])n]
(39)

≤ logEr(Θm)

Eν(X)

 m∑
j

e
λ
n∆(X,Θj)

n+ λ logm (40)

= logEr(Θm)

 m∑
j

Eν(X)

[
e
λ
n∆(X,Θj)

]n+ λ logm (41)

≤ logEr(Θm)

 m∑
j

e
λ2s2

2n2

n+ λ logm (42)

= logEr(Θm)

[(
me

λ2s2

2n2

)n]
+ λ logm (43)

=
λ2s2

2n
+ (λ+ n) logm (44)

Scaling by 1
λ , and substituting λ = βmn implies ψm,n ≤ 1

2s
2βm+ logm+ 1

βm logm. Note that if β = m−1 then
ψm,n ≤ 1

2s
2 + 2 logm.

It now remains to find the optimal β for ξ = 1. For m ≥ 3 note that 1
2s

2βm + 1
βm logm + logm is convex in

β > 0 since m,n > 0. Solving for the root of the gradient we find β∗ = m−1s−1
√

2 log max(c,m) where c < 3.
For m < 3 we resign ourselves to finding the optimal constant above. Using c = e implies that for m < 3 then
ψ ≤ 2 1√

2
s+ log(m).

Theorem 2 indicates that β = O(1) is sufficient to ensure nonvacuousness of Theorem 1 for all ξ, n and a fixed
m in the sense that ψn = O(1). Although we emphasize that m → ∞ is not a noteworthy asymptotic regime,
were we to consider large m, then ψm,n = O(m) when β = O(m−1) and at best, ψm,n = O(logm) when
β = O(m−1

√
logm). That is, even for the optimial β, ψ does not vanish in n. Despite these concerns we note

the following:
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1. Theorem 1 remains non-vacuous for β = O(1) and any finite m, i.e., ψm,n is bounded by a constant in s
and m, analogous to the non-vanishing constant in Corollary 4 of Germain et al. (2016).

2. ψm,n is smallest when β = O(m−1
√

log(m)); however this choice of β scales the KL by m
√

log(m)−1 which
effects both accuracy and generalization (unlike changes to ψ which only affects generalization).

3. In practice we recommend choosing β by cross-validation and for each m,n regime. This implies the m,n-
parameterization is merely a theoretical consideration (especially in light of point 1 above).

4. Theorem 2 is an upper bound and may or may not be made tighter. Theorem 2 assumptions are arguably
fairly weak and stronger assumptions might help, e.g., bounded likelihood or ∆(X, {θ}mj ) being everywhere
sub-gaussian (as opposed to ∆(X, θ) being everywhere sub-gaussian).

5. The practitioner would not typically use large m. Given that computational complexity also grows in m,
we expect the vast majority of cases to use m ≤ 50 and to see improvements over m = 1.

C.4 Lemmas

In this section we present several Lemmas used to simplify this paper’s proofs. Most of the Lemmas are well-
known and are given here for the reader’s convenience.

Lemma 3 (Compression). If p(Θ) is absolutely semicontinuous wrt r(Θ) and 0 < Er(Θ)[e
f(Θ)] < ∞, then

Ep(Θ)[f(Θ)] ≤ KL [p(Θ), r(Θ)] + logEr(Θ)[e
f(Θ)].

Proof. Write q(Θ)
def
= r(Θ)ef(Θ)

Er(Θ)[ef(Θ)]
and note that Lemma 6 implies, 0 ≤ KL [p(Θ), q(Θ)] = KL [p(Θ), r(Θ)] −

Ep(Θ)[f(Θ)] + logEr(Θ)[e
f(Θ)].

Proof due to Banerjee (2006); Zhang (2006).

Lemma 4 (Log Markov Inequality). For any ξ ∈ (0, 1] and random variable Z ∼ p with p(Z ≤ 0) = 0 then
p(logZ ≤ logEp[Z]− log ξ) ≥ 1− ξ.

Proof. Markov’s inequality states that p(Z > t) ≤ Ep[Z]
t for non-negative random variable Z ∼ p and t > 0.

Substituting t =
Ep[Z]
ξ implies p(Z >

Ep[Z]
ξ ) ≤ ξ. Combining this with the fact that log is a non-decreasing

bijection implies p(logZ > logEp[Z]− log ξ) ≤ ξ. Examining the complement interval completes the proof.

Lemma 5 (KL-divergence iid). If p(Θm)
def
=
∏m
j p(Θj) and r(Θm)

def
=
∏m
j r(Θj), then KL[p(Θm), r(Θm)] =

mKL[p(Θ), r(Θ)].

Proof. KL[p(Θm), r(Θm)] = E∏m
j p(Θj)

[
log

∏m
j p(Θj)∏m
j r(Θj)

]
= mKL [p(Θ), r(Θ)] .

Lemma 6 (Gibb’s Inequality). If p(Θ) is absolutely semicontinuous wrt r(Θ), then KL[p, q] ≥ 0.

Proof. KL[p, q] = −Ep(x)

[
log q(x)

p(x)

]
≥ − logEp(x)

[
q(x)
p(x)

]
= − log 1 = 0 where the inequality is Jensen’s.

Lemma 7 (ψ non-negative). Under the conditions of theorem 1 and if Gm[r],Gn,m[r] < ∞, then
ψ(ν, n,m, β, r, ξ) ≥ 0.

Proof. Jensen’s inequality implies eEZ ≤ E eZ . Applying log to both sides (a monotonically increasing function),
implies EZ ≤ logE eZ . Substitute Z def

= βnm∆n,m (see eq. (15)) and note Eν(Xn)r(Θm) Z = 0 by definition.
Finally, note log z ≤ z − 1 for z > 0 implies − log ξ ≥ 0 for ξ ∈ (0, 1].

Lemma 8 (Log-Average-Exp Bound – Parametric).

− log
1

n

n∑
i

exi ≤

{
− 1
φ log 1

n

∑n
i e

φxi 0 < φ ≤ 1,

− 1
n

∑n
i xi φ = 0.
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Proof. Write lse(x) = log
∑n
i e

xi and softmaxi(a) = exp (ai − lse(a)) .

For the φ ∈ (0, 1] case, note that lse convexity and Jensen’s inequality imply lse (φa+ (1− φ)b) ≤ φ lse(a) + (1−
φ) lse(b) for a, b ∈ Rn.Multiplying by − 1

φ and rearranging yields − lse(a) ≤ − 1
φ lse (φa+ (1− c)b)+ 1

φ (1−φ) lse(b).
Substituting a = x− log n and b = − log n proves the first case.

For the φ = 0 case, note that L’Hopital’s rule implies:

lim
φ→0

1

φ
lse (φx− log n) = lim

φ→0

∂
∂φ lse (φx− log n)

∂
∂φφ

= lim
φ→0

∑n
i softmaxi (φx− log n)xi

1
=

1

n

n∑
i

xi

since limφ→0 lse(φx − log n) = limφ→0 φ = 0. The bound follows from this fact, the convexity of − log z, and
Jensen’s inequality: − log 1

n

∑n
i e

xi ≤ − 1
n

∑n
i log exi .

Lemma 8 is potentially useful because it shows that minimizing − 1
φ log

∑m
j p(X|Θj)

φ is still consistent with
minimizing PACm (i.e., φ = 1) in the sense that φ ∈ [0, 1] implies an upper bound. This result might be useful
for mitigating some of the gradient variance observed in the Monte Carlo approximation of PACm for large m;
this conjecture is left for future work. (We note that all experiments reported in this paper use φ = 1.)

Lemma 8 similarly exists in Asadi and Littman (2017) though our proof differs slightly.

Lemma 9 (Log-Average-Exp Bound – Simple).

max

(
1

n

n∑
i

xi,max{xi}ni − log n

)
≤ log

1

n

n∑
i

exi ≤ max{xi}ni (45)

Proof. For the upper bound, note that:

log
1

n

n∑
i

exi = max{xj}nj + log
1

m

n∑
i

exi−max{xj}nj

≤ max{xj}nj + log
1

n

n∑
i

e0

= max{xj}nj

For the lower bound, note that:

log
1

n

n∑
i

exi ≥ log emax{xj}nj − log n = max{xj}nj − log n

and by Jensen’s inequality,

− log
1

n

n∑
i

exi ≤ − 1

n

n∑
i

log exi .

D Additional Experimental Results

In this section we present additional experimental results which were omitted from the main text due to space
constraints.
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D.1 Mixture

Figure 3 shows that PACm is able to accurately predict multimodal data even if the posterior, prior, and likelihood
are all unimodal. To test if this is a result of an effectively more expressive posterior induced by training with
the loss, we repeated this experiment, but using an explicitly multimodal posterior distribution: A mixture of
two multivariate normals. Details of this experiment are presented in Appendix E.

In Figure 5, we show the predictive models learned by training with ELBO, PAC2
T , and PACm. Similar to

Figure 3, we find that ELBO consolidates all of its probability mass on the mean of the data, aiming to maximize
the expected log-likelihood of the data (the average squared deviation between the predicted mean and observed
data). PAC2

T improves upon this slightly because the expected log-likelihood term is in tension with the variance
term which tries to maximize the difference in log-likelihood between different samples of the model.

Figure 5: Similar to Figure 3, but where the surrogate posterior is multimodal. We find that the results are unchanged,
despite the increased flexibility afforded to ELBO and PAC2

T through the use of multiple modes in the posterior.

Figure 6: Visualization of the means of the likelihood predicted using samples from the posterior distribution.
The top row shows the results for a unimodal posterior, and the bottom row shows the results for a multimodal
posterior. We find that ELBO assigns all predictions to y=0, while PAC2

T appears to have occasional samples
that track the observed data. PACm only has samples which track the observed data.
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Though we find that PAC2
T does a much better job of predicting the data than ELBO (measured by the KL

Divergence between the predictive model and the true generative model), this result is not obvious from looking
at Figure 3 and Figure 5. In order to make this result more clear, instead of visualizing the histogram of samples
from the predictive model, we instead draw 1000 samples from the posterior. For each posterior sample, we
show the predicted mean of the output distribution as a function of x. Effectively, we want to see two curves
tracing each mode in the output data. We show the results in Figure 6. For a 1 component model, we find that
PAC2

T places most of the probability mass on the mean, with tails that can be seen reaching toward the modes.
However, we find that there are relatively few samples from the model which track any mode in the data. For
a 2 component model, we find that there are proportionally more samples which track each of the modes, but
these are still much less frequent than samples which merely follow the mean in the data. For reference, the
peak probability density for samples near the data is roughly 30 times less than the density at the mean. This
is better than ELBO which places all of its probability near the mean. It is also worse than PACm, for which
the 1 component model only has very few samples which fall away from either of the modes, and for which the
2 component model only has samples at each mode.

D.2 Well Specified Mixture

To show that all losses perform equivalently when the loss is well specified, we show here an experiment we ran
where the likelihood is assumed to be multimodal. Here we used a mixture of normal distributions, with fixed
categorical distribution and component variance. This left us to predict only the mean, similarly to the other
mixture experiments. Additional details are presented in subsection E.4.

We show the results in Figure 7. As expected, since ELBO is tight for well specified models, it does a reasonable
job of recovering the true predictive distribution. However, we should also note that the models which optimize
bounds on the predictive risk also perform comparably. In fact, PACm observes a marginally lower KL Divergence
from the true generative distribution. We measure KL = 0.007 for PACm, KL = 0.017 for ELBO, and KL = 0.07
for PAC2

T . We did not evaluate if the discrepancy is simply due to variance in the optimization or if the lower
KL observed from PACm is a result of optimizing a tighter bound.

Figure 7: Similar to Figure 3, but where the likelihood is multimodal. This demonstrates performance for a well-specified
model. We see that in this scenario, all three losses recover a good predictive model.

D.3 Bayesian Neural Network - Stochastic Weights

For classification experiments using stochastic weights, we give the model the full images from each dataset and
attempt to predict the output class. For this, we assume the following graphical model:

Θ ∼ r(Θ) (46)
for i = 1 . . . n :

yi ∼ p(Yi|zT (xi,Θ)) (47)

where zT is the output of a T -layer neural network where each layer’s parameters are specified by a partitioning
of the random vector θ. For example, if zT is a multilayer perceptron, it might be defined by the recurrence
zt(x, θ) = at−1(zt−1(x, θ))wt + bt. where {(wt, bt)}Tt is partition of vector θ and with appropriately reshaped
members and where a(·)w is a (row-) vector-matrix product.



Warren R. Morningstar, Alexander A. Alemi, Joshua V. Dillon

We experimented with classification using a Bayesian Neural Network on several popular benchmarking datasets.
Experimental details can be seen in subsection E.5. Similar to Alemi et al. (2018), we evaluate our models as a
function of the constant β by producing the relationship between predictive negative log-likelihood (distortion)
and KL divergence in the model (rate), a measure of compression of the model. For global experiments, we show
the results in Figure 8. At the end of the day, all models achieve a comparable accuracy (within the experimental
uncertainty). However, we find that PACmand PAC2

T do so at lower rate than ELBO, and also have the dominant
Pareto-frontier in the information, indicating that it may be doing a better job of distilling useful information
from the data.

Figure 8: Predictive negative log-likelihood as a function of the KL divergence between the learned posterior and
the prior (a measurement of the information content contained in the posterior distribution). The Pareto frontier
for each model is shown as the solid line, as measured by the indicated points. Lower and to the left is “better.”
While all models have comparable performance, we find that models which optimize PAC-Bayesian bounds on
the predictive likelihood do a better job of distilling information from the dataset, and therefore require fewer
bits to produce equivalent accuracies. PACm performs best.

D.4 Bayesian Neural Network - Stochastic Activations

We also consider classification using a different, and non-traditional, type of Bayesian Neural Network wherein
we treat the activations of an intermediate layer in the model as the random variables. This corresponds to the
following graphical model.

for i = 1 . . . n :

Zi ∼ r(Z) (48)
yi ∼ p(Yi|Zi) (49)

In this formulation neither evidence xi nor deep neural network are directly present in the assumed generative
process. Rather, these ideas appear only in the construction of the surrogate posterior, i.e., Zi ∼ q(Z|xi, θ).
For example, one might assume q(Zi|xi, θ) ≡ Normal(µx, σx) where µx, σx are computed from two outputs of
a DNN evaluated on xi and using parameters θ (both of which are regarded as being non-stochastic). This
type of setup is familiarized by Variational Autoencoders Kingma and Welling (2013), and in deep variational
information bottleneck Alemi et al. (2016) models which use this graphical model to optimize for the log-evidence
(or a bound on mutual informations) to set up either an unsupervised generative model (VAE) or a supervised
predictive model (VIB). For these experiments, we follow this previous work and use a deep neural network as
an “encoder” which predicts the parameters of the posterior distribution, and a “decoder” which uses the latent
variable to define p(Yi|Zi). As in Kingma and Welling (2013), we use the reparameterization trick to differentiate
through the posterior sampling, which facilitates the optimization of the encoder parameters.

Experimental details are presented in subsection E.5. To evaluate performance, we show the Negative log-
posterior-predictive probability as a function of the KL divergence between the posterior and the prior. The
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results are shown in Figure 9. Notably, we find that PACm has a Pareto frontier which advances noticeably
beyond the other alternatives. This means that the model needs to learn less information in the posterior in
order to make reasonable predictions on the data. We further show the classification accuracy as a function of
KL in Figure 10. We find that both PACm and PAC2

T appear to require significantly less information in the latent
representation in order to make useful predictions. PACm still appears to have the dominant Pareto frontier
in this space, though it is often ambiguous that it performs “better” than PAC2

T in this space. However, it
still appears that both outperform ELBO which appears to undergo posterior collapse at relative high rates, as
indicated by the sudden sharp decrease in accuracy.

Figure 9: Similar to Figure 8, but where the posterior is defined over activations of an intermediate layer of the
network, rather than all of the weights. Similar to before, lower and to the left is “better.” We find that in this
context, PACm clearly has the dominant pareto frontier.

Figure 10: Classification accuracy as a function of the KL Divergence between the posterior and the prior. PACm

and PAC2
T consistently offer higher accuracy as a function of KL (i.e. for more compressed posteriors), with PACm

appearing to do slightly better on MNIST. Sharp decreases in classification accuracy, along with corresponding
large uncertainty in final accuracy correspond to a sudden collapse of the posterior which occurs for sufficiently
large β.
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E Experimental Details

E.1 Example Code

Here we provide example code for computing each loss. In all cases, we assume that one has a posterior, prior,
and likelihood, where the posterior and prior are over the weights of the model, and the likelihood is a function
which takes in weights and inputs and returns a probability distribution over outputs. All of the following use
tensorflow and tensorflow probability Abadi et al. (2016); Dillon et al. (2017). Additional arguments are xy and
y; the inputs to the model and outputs from the model, m; the number of samples to draw from the posterior,
β; the weight to place on the KL penalty, and n; the number of examples in the dataset.

def elbo(prior, likelihood, posterior, x, y, m, beta, n):
w = posterior.sample(m)
ll = likelihood(x, w).log_prob(y)
kl = tf.reduce_mean(

posterior.log_prob(w) - prior.log_prob(w),
axis=0)

nll = -tf.reduce_mean(ll, axis=(0, 1))
return nll + kl / (beta * n)

Figure 11: TF Probability (Dillon et al., 2017) implementation of ELBO loss for a unimodal global latent variable
models (e.g., BNN).

def pacm(prior, likelihood, posterior, x, y, m, beta, n):
w = posterior.sample(m)
ll = likelihood(x, w).log_prob(y)
kl = tf.reduce_mean(

posterior.log_prob(w) - prior.log_prob(w),
axis=0)

nlpp = -tf.reduce_mean(
tfp.math.reduce_logmeanexp(ll, axis=0),
axis=0)

return nlpp + kl / (beta * n)

Figure 12: TF Probability (Dillon et al., 2017) implementation of PACm loss for a unimodal global latent
variable models (e.g., BNN). Note that this is identical to ELBO, with the exception of the use of the negative
log-posterior-predictive rather than the negative log-likelihood.

Note that PACm and ELBO are almost identical. The only difference between the two is that PACm uses a
log-mean-exp over the sample dimensions to get the negative log-posterior-predictive probability rather than the
expected negative log-likelihood. Note also that this is not the case with PAC2

T , which relies on the additional
computation of a complicated variance term. This term has memory and compute cost which scales in the number
of samples, though this will likely be sub-dominant to the memory cost of the forward pass in the network itself.
It also relies on several tricks to encourage stability, and for the likelihood to be bounded in order for it to not
converge to −∞.

E.2 Toy Model

The toy problem in fig. 2 was as described in section 5. The true data distribution came from a 30-70 mixture
of two Normal distributions, with a variance of 1 and means at -2 and 2. The model was a standard Normal with
fixed unit variance, the only learned parameter being the mean. Five datapoints were drawn, as indicated by
the hash marks near the axis in the figures. The inferential risks were determined analytically, as the solution
takes on the closed form (Murphy, 2007).

For the PAC-predictive risk, the posterior was found numerically with an iterative procedure. The sought after
parameter distribution was represented by the values the density took on a grid with 500 points from -30 to 30.

http://tensorflow.org/probability/
http://tensorflow.org/probability/
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def pac2t(prior, likelihood, posterior, x, y, m, beta, n, smoothing_constant=0.1):
w = posterior.sample(m)
ll = likelihood(x, w).log_prob(y)
nll = -tf.reduce_mean(ll, axis=(0, 1))
kl = tf.reduce_mean(posterior.log_prob(w) - prior.log_prob(w), axis=0)
# We now compute the Masegosa "variance."
lmx = tf.stop_gradient(

tf.reduce_max(ll, axis=0, keepdims=True) + smoothing_constant)
ll_max_centered = ll - lmx
al = tfp.math.reduce_logmeanexp(ll_max_centered, axis=0)
h = 2. * tf.stop_gradient(al / (1 - tf.math.exp(al))**2 +

1. / (tf.math.exp(al) * (1 - tf.math.exp(al))))
var1 = h * tf.math.exp(2 * ll_mac_centered)
var2 = tf.math.reduce_mean(

h * tf.math.exp(
ll_max_centered[tf.newaxis] +
ll_max_centered[:, tf.newaxis]),

axis=0)
variance = tf.math.reduce_mean(var1 - var2, axis=(0, 1))
return nll - variance + kl / (beta * n)

Figure 13: TF Probability (Dillon et al., 2017) implementation of PAC2
T loss for a unimodal global latent variable

models (e.g., BNN).

If we take m→∞ in P̃n,m in eq. (13), we have:

P̃n,∞[q; r, β] = − 1

n

n∑
i

log

(∫
dθ q(θ)p(xi|θ)

)
+

1

βn
KL [q(Θ); r(Θ)] (50)

Trying to minimize this functional with respect to q(Θ) using calculus of variations (along with the constraint
that q(Θ) integrates to 1) suggests an iterative procedure to find the optimal parameter distribution:

qn+1(Θ) ∝ r(Θ) exp

(
β
∑
i

p(xi|Θ)

p(n)(xi)

)
(51)

p(n+1)(xi) = αp(n)(xi) + (1− α)

∫
dθ q(n+1)(θ)p(xi|θ). (52)

We iterated these equations numerically, representing the parameter distribution as the values it took on a grid
of 500 points between -30, and 30. eq. (51) sets the new estimate for the parameter distribution in terms of the
current estimate for the data point marginal likelihoods. Notice the proportionality here, as we then numerically
normalized the density after setting it to the right hand side of eq. (51). Then in eq. (52) we update our estimates
of the data point marginal likelihoods, which act as sort of weights for the generalized Boltzmann distribution
that is our parameter distribution. For the figure in the paper the mixing fraction α was set to 0.9.

The empirical predictive risk was minimized numerically. For the empirical predictive risk, an explicit mixture
was fit, in this instance a 300 component Normal distribution, all with fixed unit variance. This is akin to
searching for a 300 component atomic posterior distribution (q(Θ) =

∑
i λiδ(Θ− θi)). This was minimized with

adagrad trained until it reached a fixed point to within a tolerance of 10−5. Repeated runs all gave the same
result. Though this was assuming the parameter distribution was itself atomic, experiments with a setup as was
done for the PAC-predictive risk verified that the parameter distribution quickly does collect to an delta-comb.

http://tensorflow.org/probability/
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E.3 Sinusoid

As mentioned in section 7, for our first experiment we tried to predict data drawn from the following sinusoid
model:

for i = 1 . . . n :

µxi = 7 sin

(
3xi
4

)
+
xi
2

(53)

Yi ∼ Normal(µxi , 10). (54)

We generate data for 104 evenly spaced values of x ∈ [−10.5, 10.5].

For our neural network, we use a two layer MLP with 20 hidden units, and a hyperbolic tangent activation
function. We use a Normal distribution for the posterior, with both mean and variance as trainable variables.
The initial values of the means were set to 0, and the initial variances were set to 1. The variances were constrained
to be positive using the exp bijector available in tensorflow probability. We similarly use Normal(0, 1) for the
prior over each weight and bias. For the likelihood, we use the MLP to predict the mean of a normal distribution,
whose variance is fixed to 1.

We train all models using Adam (Kingma and Ba, 2014) with a learning rate of 0.01 and no learning rate decay.
We use full batch training, for 105 steps. For fig. 3, we used m = 100 samples from the posterior during training,
and β = 1 for all models. For all models, we evaluate performance using the log-posterior predictive, constructed
using 103 samples from the posterior.

E.4 Mixture Experiments

For our second experiment, we use data generated from a two component mixture distribution:

for i = 1 . . . n :

µxi = 7 sin

(
3xi
4

)
+
xi
2

(55)

Zi ∼ Rademacher (56)
Yi ∼ Normal(Ziµxi , 1) (57)

The model setup was largely similar to the Sinusoid experiment described in appendix E.3, but with one major
difference: For these experiments we added an additional hidden layer to the networks to aid in expressiveness.
We also used Exponential Linear Unit (ELU) activations instead of tanh to facilitate gradient propagation more
easily. For these experiments we used both a unimodal posterior, as well as a mixture posterior, but the
underlying distribution was implemented similarly to the sinusoid (i.e. a Normal distribution with learnable
mean and variance). When considering a multimodal posterior, we fixed the component probabilities to 0.5 and
used stratified sampling to integrate over the discrete categorical random variable. For unimodal likelihoods, we
used a normal distribution whose mean was predicted by the model, and which had a fixed variance of 1. When
considering a mixture likelihood, we compared situations with both 1 and 2 components in the posterior. The
MLP was set up to predict the means of a two component mixture of Gaussian distributions, whose component
probabilities were fixed to 0.5, and whose component variances were fixed to 1.

All models were again trained using Adam with an initial learning rate of 0.01, but this time we added a small
amount of learning rate decay with a decay rate of 0.5 and a decay timescale of 105 steps. Because the model
was only trained for 105 steps, the learning rate only undergoes one half-life. We did not study if holding the
learning rate fixed changed the results at all, though it is doubtful that it did. We employed full batch training,
and used m = 100 samples from the posterior. To evaluate the models qualitatively, as in fig. 3, we used 105

samples from the posterior to construct the predictive distribution. For each sample, we computed a forward
pass for 103 evenly spaced values of x and drew a single sample from the resulting likelihood. This gave us
105 samples from the predictive distribution for each x. We then computed the 1-d histogram of the predictive
distribution at each x, which we used to display the predictive models as in fig. 3. To quantitatively evaluate
models, we used 104 samples from the posterior to construct the predictive distribution, and then computed the
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KL divergence from the known generative distribution for each of the (x, y) pairs in an independently generated
test set.

E.5 Image Experiments

E.5.1 Structured Prediction

For the structured prediction experiments, we attempt to solve the following problem: Given the top half of
an image, predict the bottom half of the image. We follow the setup in Masegosa (2019), for this experiment
which we now describe. We use the experimental TFP Neural Networking toolbox (tfp.experimental.nn,
(Dillon et al., 2017)) and TFP Joint Distributions (Piponi et al., 2020) to compactly specify BNNs. For the
posterior and prior, we used Normal distributions. The posterior had learnable variables to represent the mean
and variance, while the mean and variance in the prior are assumed to be constant. The model predicts the
means of independent Normal distributions with fixed variance of 1/255 which we use as our likelihood for each
pixel. We assume that all pixels are independent and therefore ignore covariance between pixels in the output
distribution. Note that this assumption is (purposefully) incorrect; images generally have strong correlations
between adjacent spatial pixels and between the colors within a single pixel. For the network architecture, we
used a 3-layer MLP with 50 hidden units, and ELU activations. We therefore fed our input images to the model
as flattened vectors. For CIFAR-10, we converted the image to grayscale to reduce the number of pixels and
simplify the model.

All models were trained using Adam with an initial learning rate of 0.001, decayed by 0.5 every 105 steps. We
train models for 500 epochs. We used a batch size of 128 during training. We tested performance on the heldout
evaluation set as a function of m, ranging from m = 1 to m = 32, where each m corresponds to the number
of samples used during training. Reconstruction performance was quantified using the log posterior-predictive
(nlpp), which we measure using 100 samples from the posterior. We train 5 different models independently, with
different random initializations and different shufflings of the training set in order to obtain the uncertainties in
the final performance of the model.

E.5.2 Classification - Stochastic Weights

For our likelihood, we use a categorical distribution with 10 possible outcomes (all image datasets we consider
have 10 output classes). Similar to previous experiments, we used Normal distributions for both the Posterior
and the Prior, where the posterior uses variables to represent the location and scale of the normal distribution,
and where the prior uses fixed values, both of which were initialized or fixed to 0 for the location and 1 for the
scale respectively. We used the same architecture as the structured prediction experiments: A 3-layer MLP with
50 hidden units and ELU activations. All input images were normalized to the [-1, 1] interval before being passed
to the first layer of the network.

Similar to the structured prediction experiments, we trained with a batch size of 128. We optimized our model
for 100 epochs using Adam, with an initial learning rate of 10−4, which we decayed by a factor of 0.5 every 105

steps. We study performance as a function of β, and fix the number of samples used during training to m = 4.
We consider 33 values of c spaced logarithmically and ranging from

[
10−3 − 103

]
. We evaluate performance by

computing both the log-posterior-predictive nlpp, on the heldout evaluation set. We use 100 samples to construct
the posterior predictive distribution.

E.5.3 Classification - Stochastic Activations

For this model, we use the latent embedding zi to codify each example in a 16 dimensional latent space. To
increase the capacity of the model and since the memory cost is much lower, we consider a convolutional neural
network for the encoder. This layer uses the following architecture2: 4 convolutional layers, followed by 2 dense
layers. For each layer, we use LeakyReLU activations. Alternating convolutional layers use a stride of 2. The
last dense layer predicts the parameters of the posterior. All images were normalized to the range [-1, 1] prior
to being passed to the network.

For the posterior, we used a Multivariate Normal Distribution. The encoder predicts the location and the
2This architecture follows the encoder from the VAE example at https://www.tensorflow.org/probability/

examples/Probabilistic_Layers_VAE

https://www.tensorflow.org/probability/examples/Probabilistic_Layers_VAE
https://www.tensorflow.org/probability/examples/Probabilistic_Layers_VAE
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cholesky decomposition of the precision matrix. For the prior, we used a Multivariate Normal distribution with
mean 0, and an identity covariance. For the likelihood, we used a categorical distribution. During training,
we used a batch size of 128. We optimized our model for 100 epochs, using Adam with an initial learning
rate of 10−4, which was decayed by a factor of 0.5 every 105 training steps. Similar to our stochastic weights
experiments, we evaluated performance as a function of β using 100 log-spaced bins between 10−3 and 10. We
evaluate performance by computing both the nlpp and the Accuracy on the evaluation set. For both, we used
100 samples from the posterior to construct the predictive distribution.
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