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Abstract

State-of-the-art neural networks require extreme computational power
to train. It is therefore natural to wonder whether they are optimally
trained. Here we apply a recent advancement in stochastic thermodynam-
ics which allows bounding the speed at which one can go from the initial
weight distribution to the final distribution of the fully trained network,
based on the ratio of their Wasserstein-2 distance and the entropy pro-
duction rate of the dynamical process connecting them. Considering both
gradient-flow and Langevin training dynamics, we provide analytical ex-
pressions for these speed limits for linear and linearizable neural networks,
e.g. Neural Tangent Kernel (NTK). Remarkably, given some plausible
scaling assumptions on the NTK spectra and spectral decomposition of
the labels– learning is optimal in a scaling sense. Our results are consistent
with small-scale experiments with Convolutional Neural Networks (CNNs)
and Fully Connected Neural networks (FCNs) on CIFAR-10, showing a
short highly non-optimal regime followed by a longer optimal regime.

1 Introduction
While for most of its history, thermodynamics was concerned with describ-
ing systems near equilibrium, in recent years there have been breakthroughs
in stochastic thermodynamics and our ability to describe far-from-equilibrium
systems. Thermodynamic fluctuation relations, uncertainty relations, and speed
limits [4, 12, 14, 2] allow us to relate the equilibrium properties of systems to
their non-equilibrium behavior. The thermodynamic speed limits in particular
lower bound the time it takes a physical system’s configuration to evolve from an
initial to a final distribution; the bound is given by the Wasserstein-2 distance
in weight-space divided by the entropy production of the process. Applied to
computation, such speed limits were recently used to show that modern CPUs
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can write bits within a O(1) factor from the optimal writing rate (see more
examples in [14]).

Far-from-equilibrium dynamical systems of great interest are trained neu-
ral networks. As their training can be thought of as a virtual physical process
involving many degrees of freedom, it must also conform to the rules of ther-
modynamics. In particular, the training time obtained using Neural Tangent
Kernel (NTK)-type dynamics [7] or Langevin-type dynamics should be bounded
by the thermodynamic speed limit. Given the costs of training large models, it
is desirable to characterize the efficiency of neural networks from this perspec-
tive. In particular, understand the impact of various design choices and data-set
properties on the speed at which neural networks can learn.

Here we embark on such a line of study. Our main results are the following:

• We recast thermodynamic speed limits in deep learning terms showing,
in particular, how entropy production relates to features of the loss land-
scape, the learning rate, and, for Langevin dynamics, the free energy.

• We derive analytical expressions for the Wasserstein-2 distance, entropy
production, and the speed limit for linear regression and for Deep Neural
Networks (DNNs) trained in the NTK regime.

• Remarkably, we find that NTKs with a power law spectrum combined with
an initial residue, the target minus initial prediction, having relatively
uniform spectral decomposition exhibit optimal dynamics in the scaling
sense. Namely, the actual speed is a O(1) factor times the theoretically
optimal speed limit. In contrast, for residues with a stronger power-law
decaying spectral decomposition, this factor grows with the data-set size.

• We report a numerical study on CIFAR-10, showing both of the above
behaviors. Interestingly, warm-starting makes the residues more uniform
and puts us in the regime of optimal (up to O(1) factors) learning.

2 Speed limits of learning
Consider a single neural network or an ensemble of such networks with weights
θ ∈ RP at initialization. Training the neural network for a duration T could
be viewed as a dynamical process, moving the initial distribution of network
weights from p(θ(0)) to p(θ(T )). Generally speaking, thermodynamics speed
limits provide lowers bounds TSL ≤ T on the time it takes to perform such a
process based on its irreversibility and the distance between the initial and final
probability distributions of the learnable weights.

Speed limits have been derived for both discrete and continuous dynamical
processes. Here we focus on two relevant continuous time processes, NTK-type
dynamics and Langevin-type dynamics. Specifically, given training data, D, and
general loss function L(θ;D), we consider the Langevin algorithm described by
the stochastic differential equation, with η ≥ 0 being the learning rate

dθ(t) = −η∇θV (θ(t);D)dt+
√
2ηβ−1 dB(t), (1)
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where B(t) is a Brownian motion (unit variance random noise), with temper-
ature (noise) β ∈ (0,∞], and for NTK-type dynamics we take β−1 = 0. We
consider the initial condition for θ(0) = θ0 distributed randomly as an indepen-
dent Gaussian on all θ0’s namely p(θ0) ∝ e−∥θ0∥2 1. The potential V is given
by

V (θ;D) =

{
L(θ;D) NTK
∥θ∥2 + L(θ;D) Langevin

(2)

For simplicity, considering Langevin dynamics, we focus on the case where train-
ing infinitely-long without L(θ;D) term yields p(θ(0)). Furthermore, we keep
the learning rate (η) implicit here, setting η = 1 in the following. Instead of
doubling the learning rate, one can think of doubling V and β−1. The above
equation is a continuum approximation of the dynamics of discrete gradient
descent with white noise at a low learning rate.

2.1 Entropy production and irreversibility
The tendency of a process to evolve in a preferred direction in time is related to
entropy. The second law of thermodynamics states that entropy cannot decrease
over time. Conversely, entropy production relates to the probability of a process
running forward in time compared to a process running backward in time.

To make this point operational, let p(θ(0)) denote the distribution of initial
states and p(θ(T )|θ(0)) the conditional distribution that θ(0) evolves into θ(T )
within time T . Likewise, p(θ(T )) is the distribution of the final state and the
conditional distribution q(θ(0)|θ(T )) denotes the probability that the processes
evolve from state θ(T ) back into the state θ(0) within time T along the path
θ̃(t) = θ(T − t). Entropy production (or irreversibility) is then defined by [12]

R =
〈
ln

p(θ(0))

p(θ(T ))

〉
+
〈
ln

p(θ(T )|θ(0))
q(θ(0)|θ(T ))

〉
, (3)

where the expectation is taken over the distribution p(θ(0)) of initial states.
The first term depends only on the initial and final distributions, the second
term also encapsulates the dynamical process and its reversed process.

We next collect and combined various results for R scattered in the literature
and adapt them to three relevant machine learning settings. Without loss of
generality, we take here the learning rate, η = 1.

Consider first the case of Langevin dynamics, one finds the simple expression

β−1R = β−1 lnZ∞ − β−1 lnZ0 + ⟨L(θ(0))⟩ , (4)

where the so-called “free energies” β−1 lnZ∗ are related to p(θ(∗)) via p(θ(∗)) =
e−βV (θ(∗))/ lnZ∗ where ∗ ∈ {0, T}. Notably, the irreversibility of the dynamical
process depends only on the initial and final states.

1any variance changes across layers are implicit in the norm here
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Next, if one is interested in finite T , entropy production equation 17 can be
expressed as a dynamical quantity [14] from which we obtain (see Appendix A.2)

β−1RT =

∫ T

0

⟨∥∇θV ∥2⟩ − 2β−1 ⟨∆θV ⟩+ β−2 ⟨∥∇θ ln p∥2⟩ dt . (5)

where R = limT→∞ RT . In the low noise limit, β ≫ 1 the first term dominates,
which has the simple interpretation of the average squared length of the gradient.
The next leading term is, O(β0) which contains the average Hessian of the loss
function.

Finally, turning to the NTK case, where β−1 = 0 we plug (equation 1) into
(equation 5) and find

β−1R =
〈
L(θ(0))− L(θ(T ))

〉
. (6)

2.2 Speed limits from optimal transport
The evolution of weights can also be phrased as an optimal transport problem.
In particular, the operation of transporting initial weights to final weights could
be described by a probability distribution P (θ(0),θ(T )) whose two marginals
are the initial and final distributions. This joint probability also called a plan,
can be thought of as the chance of θ(0) to end up in θ(T ) by some process. One
can then define the cost of a plan and ask what is the optimal plan. One relevant
cost function to consider is the Euclidean distance squared ⟨|θ(0)−θ(T )|2⟩. The
Wasserstein-2 distance between the initial and final distribution (W2(p0, pT )) is
defined as the minimal value of this cost when optimized over all possible plans
(Eq. (25) in Appendix A.3).

The dynamical process itself yields a specific plan (p(θ(0),θ(T ))). Remark-
ably, it turns out that Tβ−1R is equal to the cost of the plan p(θ(0),θ(T )) (see
Appendix A.3 for details). Noting next that this plan cannot be more opti-
mal than the plan underlying W2(p0, pT ) (i.e. Tβ−1R ≥ W2(p0, pT )) yields the
thermodynamic speed limit known as the Benamou–Brenier formula [2, 14]

T ≥ TSL ≡ W2(p0, pT )

β−1R
. (7)

Besides obtaining R, as discussed in the previous section, the above formula
requires solving the optimization problem underlying W2(p0, pT ). While this
can be difficult in general, exact formulas are known for the Gaussian distribu-
tion, Dirac delta distributions, and one-dimensional distributions. In particular,
considering a well-defined initial and final state px(θ) = δ(θ−θx) for x ∈ {0, T},
the Wasserstein distance W2(p0, pT ) simplifies to the L2 distance ∥θT − θ0∥2 in
weight space. Otherwise, various useful bounds exist [5] as well as promising
deep-learning-based numerical techniques.
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2.2.1 Implication of the Speed limit in deep learning

The speed limit involves a lower bound on training time, the distance between
initial and final probabilities, and entropy production. Given a fixed entropy
budget, it then bounds the time it takes to perform this process for any Langevin
dynamics, including dynamics with different and time-dependent potentials.
Entropy, despite being a pillar of thermodynamics and many-body physical phe-
nomena, is not a frequently measured quantity in deep learning. Consequently,
it is desirable to explain some consequences of entropy production and hence
the speed limit.

The simplest setting is gradient flow with a time-independent potential,
where the free energy (β−1R) coincides with the decrease in train loss (∆Ltrain).
Furthermore, the learning rate can be absorbed into the scale of the training
loss, hence higher learning rates would imply higher entropy production. An
optimal training of the DNN then has several related merits: (i) Given a fixed
∆Ltrain budget, no better loss function that takes us between the initial and fi-
nal state can make the network travel this distance in weight space quicker. So,
for instance, if we saturate the speed limit, no benefit can be gained by taking
the Mean Square Error (MSE) loss to be L1 loss or taking any other surrogate
loss function [9, 15]. (ii) For a fixed initial condition, where W2(p0, pT ) distance
becomes L2 distance, the network weights travel along straight lines in weight
space. Furthermore, the drop in train loss along the path is ∆Ltrainl/W2(p0, pT )
where l is the distance along the path. Hence, entropy production is uniform in
the distance along the path.

We next address the notion of a loss budget, relevant to point (i) above.
Indeed, the scale of the loss may appear arbitrary and, if so, one can scale
up the loss or the learning rate, such that the implied time-bound goes to
zero. Within our continuum description, this is indeed the case, and scaling up
the loss would simply speed up the dynamics and scale down the time-bound
in a proportional manner. However, as far as our description mimics discrete
Gradient Descent (GD), one can only consider small gradients and hence a small
loss/learning rate. At higher gradients, discrete GD would start deviating from
its continuum approximation, and at even higher learning rates it often leads
to NaNs. Analogously to how the binding energy of an atom sets a meaningful
energy scale in physics (electron volt), these discrete effects, which depend on
model and training choices, set a scale to the loss. The speed limit, as derived
from the continuum, implies nothing about this scale. Still, given that we
are well below this scale, it bounds the speed of gradient-flow dynamics. In
principle, other speed limits relevant to discrete dynamics could be derived
based on similar models [14].

3 Case studies
Here, we present two examples where the speed limit bound can be evaluated
analytically. The first example illustrates the interplay between the speed limit,
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entropy production, and noise in the algorithm for a simple linear perceptron.
The second example illustrates how the optimality in training is related to the
structure of the spectrum of the NTK, as well as the discrepancy from the target.

3.1 Linear regression - in high dimension
Consider the problem of linear regression with scalar output, given a dataset
Dn = {X,y} where X ∈ Rd×n, and y ∈ Rn. The output of the algorithm
is ŷ(x) = θTx, where the weights θ ∈ Rd are learned via Langevin dynamics
equation 1. We consider the squared error loss L(θ;D) = 1

2 ∥y − XTθ∥2 with
weight decay with intensity λd/β. In this case, one can provide exact equations
for the dynamics of W2(t), and R(t) see Appendix C for details of the derivation.

To gain intuition, below we explore the speed limit bound in the asymptotic
regime where the number of samples n, commensurate with the input dimension
size, d, such that, d/n → γ ∈ (0,∞), while d, n → ∞. To facilitate the analysis,
we assume a teacher-student setting with the target model y = θT

⋆ x, with
the true weights θ⋆ ∼ N (0, α/dId). In addition, we assume that X had i.i.d.
entries. In Appendix C we provide an exact formula for the speed limit bound,
TSL(λ, β, γ, α), which depends only on these four parameters, noise level, β−1,
the variance of the true weights, α, weight decay, λ, and the limiting dimension
ratio, γ. There are a few interesting limits, one can explore. Taking the limit of
β → ∞ i.e. zero noise (gradient descent), the speed limit amount to a specific
number,

TSL(β → ∞) → 2
1 + αλ∫
s dρ(s)

, (8)

with ρ being the Marchenko-Pastor distribution i.e. the limiting eigenvalues’
distribution of the covariance matrix XXT/n. See Appendix C for more details.
In this regime, the main source of entropy production in this limit is the loss at
initialization.

On the other hand, if we take the opposite limit of large noise we have,

TSL(β → 0) → 0 (9)

In this regime, the system is driven by noise, and essentially the distribution at
the end of training is equal to the distribution at initialization, therefore one
can learn at zero time.

In the large samples’ regime, n → ∞, (γ → 0) corresponds to n ≫ d, the
bound reaches the following finite value:

TSL(n → ∞) → 2λα. (10)

This limit is in essence where we learn the population error. Remarkably, it is
independent of the noise level β.

Last, in the over-parametrized regime, d → ∞, and d ≫ n (γ → ∞) we have
that

TSL(d → ∞) → 0 (11)
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Interestingly, in this regime, the parameters are not moving a lot and therefore
the final distribution is very close to its initial one. This is not the case when
the noise is zero, as follows from equation 8. Therefore, the limit of d → ∞ does
not commute with the limit of β → ∞.

We note that Equation 10 and equation 8 show that even in the limit of zero
noise and infinite samples, what makes the learning slower is high regularization
and high variance of the target true weights.

3.2 Neural Tangent Kernel (NTK) dynamics
As a second analytically tractable example, consider a neural network trained
in an NTK setting from a given fixed initial state (θ(0)) for some time T . As no
noise is introduced, T determines the final state (θ(T )) and decrease of the loss
(∆L(T )). Consequently, one can think of the time-bound here as a function of
T . We define inefficiency via the ratio T/TSL(T ) ≥ 1. Specifically, it is given by

T

TSL(T )
=

T∆L(T )

|θ(0)− θ(T )|2
(12)

The NTK dynamics, being linear, lends itself to exact analytical expressions
for all quantities involved. Specifically,

|θ(0)− θ(T )|2 =
∑
λ

∆2
λ λ

−1
[
1− e−λT

]2
(13)

∆L(T ) =
∑
λ

∆2
λ

[
1− e−2λT

]
,

where the summation is over all NTK train kernel eigenvalues and ∆λ is the
difference between the network’s train outputs at initialization and the target
projected on the eigenvector associated with λ.

Making several experimentally motivated assumptions on ∆λ and λ we next
derive concrete asymptotic results for the inefficiency ratio. Specifically, we
assume λk = k−α and ∆2

λk
= k−δ where k ∈ 1, . . . , n. Assuming T ∝ λ−1

n

such that the lowest mode is partially learned, as well as α, δ > 0, and 0 <
α−1(1− δ) < 1 we find the following large T asymptotic

W2 =
∑
λ

∆2
λ[1− e−λT ]2

λ
∝ Tα−1(1−δ)+1 (14)

β−1R =
∑
λ

∆2
λ

[
1− e−2λt

]
∝ Tα−1(1−δ)

whereas for −1 < α−1(1− δ) < 0 we find

β−1R ∝ T 0, (15)

and W2 remains with the same scaling. Remarkably, in the first regime, we
find TSL(T ) ∝ T . Since the proportionality factors are all O(1), we thus find
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an optimal behavior in the scaling sense. In contrast, for, δ > 1 we enter the
second regime leading to TSL(T ) ∝ T 1+α−1(1−δ). Noting that the exponent is
now smaller than, 1 we obtain a non-optimal behavior in the scaling sense.

Interestingly, if the target is small compared to the outputs at initialization,
∆2

λ would be dominated by the output of the network at initialization which is
given by a random draw from the NNGP. If, based on their similar performance,
we ignore differences between the NTK and NNGP spectra, we have that the
discrepancy ∆2

λ scales as λ. Furthermore, we observe α = 1, which means that if
f dominated, the residue we have δ = α = 1, placing us exactly at the threshold
value between the efficient and inefficient regime.

Geometric aspects. Next, we explore some geometrical aspects of the
dynamics, namely how different the length lγ of the curve traveled in weight
space is compared to the length lgeo =

√
W2 of the optimal path, which is a

straight line. As shown in Appendix B the length of both curves as a function
T scales identically

lgeo(T ) ∝ T (α−1+1−δ/α)/2 (16)

lγ(T ) ∝ T (α−1+1−δ/α)/2

Interestingly, we find the same asymptotic for the lengths, independent of α and
δ (for α > 0, δ ≥ 0 and (α−1 + 1− δ/α) > 0). This means that at least within
this NTK limit, inefficiency is not attributed to having a highly twisted and
long curve, but rather having highly inhomogeneous velocity along the curve.

4 Experiments on CIFAR-10
Here, we study the efficiency of simple CNNs trained on real-world data. Specif-
ically, we train Myrtle-5, a 5 trainable-layers convolutional network with several
pooling layers, having 128 channels on subsets of CIFAR-10 with up to 5k
samples. Training is carried out for 200k epochs using MSE loss, full batch
gradient descent, and small learning rates (10−4 to 10−5) to assure closeness to
gradient flow. We train 6 realizations of such networks, with different initial-
ization seeds, and use datasets consisting of the first n = 500, 1250, 2500, 5000
samples of CIFAR-10. We record the gradients, losses, and network weights
along the path. These enable us to estimate the Wasserstein-2 distance (L2

distance in weight-space) and entropy production (drop in loss) for each re-
alization as a function of time. From these, we obtain the inefficiency ratio
per-realization (T/TSL(T )) and geometric inefficiency ratio (lNTK(T )/lgeo(T )).
We furthermore obtain the empirical NTK spectrum and the overlap between
initialization residues and the NTK eigenvectors.

As shown in Fig. 1, the very early stages of the dynamics are associated
with a fast increase in entropy (β−1R) or, equivalently, a drop in MSE loss.
However, the accuracy does not show any marked features during this process.
This motivates us to explore two notions of inefficiency, one measured with
respect to the network’s initialization (cold start) and the other with respect
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to the first time at which test accuracy averaged over realizations reached 12%
(warm start). We note that for n = 500 we reach a final test accuracy of,
30%± 1% whereas for n = 5000 we obtain 47%± 1%.

Our main results are given in Fig. 1. These support the following rather
unexpected picture. Apart from an initial stage at which few very high NTK
kernel eigenvalue are learned, the dynamics of this real-world network trained
on real-world data seems optimal up to, a roughly constant, O(1) factor. While
in principle, one could have expected factors proportional to dataset size or
training time, these seem to cancel out.

Similarly, the length of the curve traveled during training in weight space
coincides with the L2 length up to a O(1) factor (panel (e)). Panel (c) fur-
ther tracks several different 3d projections of the path traveled in weight-space
(namely the curve (w1(t), w2(t), w3(t)) where wi are some randomly chosen sub-
set of θ) showing rather few twists and turns.

Though the actual NTK kernel of this network is not constant during train-
ing, these results are in qualitative agreement with the theoretical results given
in the NTK section, where it was assumed constant.

5 Discussion
In this work, we set out to explore learning dynamics in deep neural networks
from a thermodynamic standpoint. We fleshed out how several key concepts
in thermodynamics, such as entropy production and the thermodynamic speed
limit, carry through to the deep learning realm. Analytical formulas for these
quantities were derived for two simple models, a linear perceptron and a net-
work trained in the NTK regime. Interestingly, following some realistic scaling
assumptions on the NTK spectrum over-parameterized neural networks trained
with gradient flow revealed surprising efficiency, leaving only O(1) improvement
factors to be desired. Similarly, distance-wise, the curved traveled in weight
space during training does not differ much from a straight line. Our theoretical
results were supported by small-scale experiments on convolutional networks
trained in CIFAR-10.

Various aspects of this work invite further study. It would be interesting to
extend our theory to finite learning rates so that it can include discretization
effects. This would also shed light on what are the allowed entropy budgets,
thereby setting a definite scale for the time-bound. Extending our results to
finite-width neutral networks, perhaps using kernel-adaptation methods [13, 8,
1, 3], would enable us to study the thermodynamic implications of feature-
learning effects. Finally, it is desirable to extend our experiments to a wider
range of networks and see what practical improvements to training can be gained
from this physical viewpoint.
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Figure 1: Efficiency aspects of Myrtle-5 CNN trained on CIFAR-10.
Panel (a): MSE loss and test accuracy for six networks trained on 2500 data
points. A dramatic initial decrease in loss is evident without similar improve-
ment in accuracy. Shaded areas reflect standard deviations across networks.
Panel (b): For the same networks, speed limit as a function of epoch w.r.t.
initialization (cold start) or epoch 2000 (warm start). Most of the inefficiency is
thus attributed to the fast entropy burn near initialization. Panel (c): Again for
n = 2500, dynamics of 6 randomly chosen weight-triplets (w1, w2, w3). Panel
(d): Inefficiency ratio at epoch 200k as a function of dataset size. Panel (e):
Ratio of the curve length traveled during training over the optimal curve, again
for different data-set sizes. Panel (f): Overlap of residue at initialization and at
the warm start with the NTK eigenvectors. Most of the entropy burn can be
associated with the first few eigenvalues, which are quickly learned and hence
removed from the residue. Inset: NTK eigenvalues based on a single network
with n = 500 datapoints.
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A Conditional distribution, reversal of time and
entropy production

In this section, we provide a derivation of equation 21, and equation 5 in the
main text without loss of generality we take η = 1. We then show that these
two definitions are consistent.

A.1 Entropy production at Equilibrium
Similar to, [12] we split the definition of the entropy production in equation 17
into two parts:

R = R0 +R1, (17)

R0 =
〈
ln

p(θ(0))

p(θ(T ))

〉
R1 =

〈
ln

p(θ(T )|θ(0))
q(θ(0)|θ(T ))

〉
.

The initial and final distributions, adopting statistical physics notation, are

p0(θ) = Z−1
0 e−β∥θ∥2

(18)

with normalization Z0 = (π β−1
)P

2 known as the partition function. The tem-
perature determines the variance (2β)−1 of this Gaussian initial distribution of
the weights.

At time T the stationary distribution of the weights is

pT (θ) = Z−1
T e−β (∥θ∥2+L(θ;D)), (19)

where ZT =
∫
e−β (∥θ∥2+L(θ;D)) dθ is the normalization. The first term, with

equation 18 and equation 19, yields

R0 = β ⟨∥θ(T )∥2 + L(θ(T );D)⟩ − β ⟨∥θ(0)∥2⟩ (20)
+ lnZT − lnZ0.

The second term R1 measures the log ratio of the process running forward versus
backward. For the conservative force in Eq. (1) it can be shown (see Section A.6,
Eq. (38)) to take the value

R1 = β ⟨L(θ(0);D) + ∥θ(0)∥2⟩ − β ⟨∥θ(T )∥2 + L(θ(T );D)⟩.
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So in total with V expressed by Eq. (2) we get the irreversibility

R = lnZT − lnZ0 + β ⟨L(θ(0))⟩ . (21)

This result expresses the irreversibility of the learning process in terms of equi-
librium properties, the free energies of the weight distribution at initialization
lnZ0 and after learning lnZT and the expected initial loss.

A.2 Entropy production from dynamics
Likewise, entropy production Eq. (17) can be expressed as a dynamical quantity
[14], in terms of the stochastic velocity field v(θ, t) (for details see Appendix A.5,
i.p. Eq. (36)), which turns the Fokker-Planck equation for the temporal evolu-
tion of the density p(θ, t) into an effective transport equation,

∂t p(θ, t) +∇θ ·
[
v(θ, t) p(θ, t)

]
= 0. (22)

Here v can be thought of as an effective deterministic velocity field that would
cause the same evolution of p(θ, t) as does the stochastic process Eq. (1). En-
tropy production then takes the form (Appendix A.7)

R = β

∫ T

0

⟨∥v(θ, t)∥2⟩ dt, (23)

which, in the case of a conservative force of the learning dynamics (cf. Eq. (48)),
reads

R =

∫ T

0

β ⟨∥∇θV ∥2⟩ − 2 ⟨∆θV ⟩+ β−1 ⟨∥∇θ ln p∥2⟩ dt . (24)

In the low noise limit β ≫ 1 the first term ∝ β1 dominates, which has the
simple interpretation of the average squared length of the gradient. The next
to this leading term is ∝ β0 which contains the average Hessian of the loss
function. Equating Eq. (5) and Eq. (21) therefore relates the geometry of the
loss landscape to equilibrium properties of the initial and the final distribution
of the weights. This is the second theoretical result of this work.

A.3 Speed limits from optimal transport
The stochastic velocity for v appearing in Eq. (23) is key to linking entropy pro-
duction to the distance between the initial and final distribution of the weights
and to optimal transport. This velocity enables the definition of a measure of
the distance between two probability distributions, the Wasserstein-2-distance,
[14, their Eq. (11)]

W2(p0, pT ) := min
v

T

∫ T

0

⟨∥v(θ, t)∥2⟩ dt, (25)
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where minimization is performed under the constraint that the velocity field
v(θ, 0 ≤ t ≤ T ) transforms p0(θ) into pT (θ) by Eq. (22). The right-hand side of
Eq. (25) contains the time-averaged mean squared velocity ⟨∥v(θ, t)∥2⟩ required
for optimal transport. Comparing Eq. (25) to Eq. (23), the learning process
is but one possible transport solution, not necessarily the optimal one though,
so one obtains the thermodynamic speed limit known as the Benamou–Brenier
formula [2, 14]

T ≥ βW2(p0, pT )

R
, (26)

which is the third theoretical relation to be explored in the following. It provides
a lower bound on the time T for a stochastic process to evolve p0 into pT , which
depends on the distance W2 between the two distributions p0 and pT and on
the amount of entropy R produced at a given temperature β.

A.4 Path measure
We here follow [12, i.p. Sec 4] and [6, i.p. Sec 7.2]. Assuming Itô convention,
the stochastic differential equation (SDE) equation 1 needs to be evaluated in
discrete time, as

θ(t+ dt) = θ(t)−∇θV (θ(t);D) dt+ dB(t), (27)

dB(t)i
i.i.d.∼ N (0, 2β−1IP dt).

The important point here is that the drift is evaluated at the left boundary t of
any time interval [t, t+ dt]. The dynamics equation 1 implies a measure on the
path θ(t) for t ∈ [0, T ]. In the following consider discretized time, introducing
the temporal indices l as θl := θ(l dt), dBl := dB(l dt), and fl := f(θl, l dt) =
∇θl

V (θl;D). In this notation, the Ito update step in equation 27 takes the form

θl+1 = θl + fl dt+ dBl 0 ≤ l ≤ T/dt, (28)
θ0 = θ(0).

The measure on the path θ1, . . . ,θT/dt is induced by the Gaussian measure ∝
exp

(
− β

4dt

∑T/dt
i=0 ∥dBl∥2

)
of the stochastic increments dBl,i

i.i.d.∼ N (0, 2β−1dt).
Solving equation 28 for dBl = θl+1 − θl − fl dt one has

p(θ1, . . . ,θT/dt|θ0) ∝ exp
(
− β

4

T/dt∑
i=0

∥∥∥∥θl+1 − θl
dt

− fl

∥∥∥∥2 dt
)
. (29)

Symbolically, one may therefore write the measure on the path θ(0 ≤ t ≤ T ) as
a functional

p[θ(0 ≤ t ≤ T )] ∝ exp
( ∫ T

0

A[θ](t) dt
)
, (30)
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where A denotes the time-local Lagrangian (also known as the Onsager-Machlup
action [10], reviewed in [6, i.p. Sec 7.2])

A[θ](t) = −β

4

[
∂tθ(t)− f(θ(t), t)

]2
. (31)

Note, however, that in the symbolic notation the Ito procedure as well as the
initial condition are both implicit.

A.5 Fokker-Planck equation and equilibrium distribution
The above process can also be represented in terms of macroscopic quantities,
such as probability density. The probability density satisfies the Fokker-Planck
equation. This equation takes the form of a continuity equation (cf. [11])

∂t p(θ, t) = −∇θ · J (θ, t), (32)

with the probability current J

J(θ, t) =
(
f(θ, t)− β−1 ∇θ

)
p(θ, t). (33)

For a conservative force f(θ) = −∇θV (θ) the stationary distribution is of Boltz-
mann form

p0(θ) ∝ e−βV (θ), (34)

for which the probability current J(θ) ≡ 0 vanishes. A different way of writing
the Fokker-Planck equation Eq. (32) is in the form of a transport equation where
the probability current J = v p is the product of velocity v and probability p,
namely

∂t p(θ, t) = −∇θ ·
[
v(θ, t) p(θ, t)

]
, (35)

v(θ, t) = f(θ)− β−1 ∇θ ln p(θ, t). (36)

The additional term −β−1 ∇θ ln p can be regarded as an entropic force. The
interpretation of v as a velocity makes sense, because it may be interpreted as
the probability current J conditioned on finding the system in state θ at time
t. For a system in thermodynamic equilibrium Eq. (34), the velocity vanishes
at each point θ, because v0(θ) = J0(θ)/p0(θ) ≡ 0.

A.6 Irreversibility with conservative forces
To measure the irreversibility, we need the ratio of probabilities Eq. (17)

R1 =
〈
ln

p(θ(T )|θ(0))
q(θ(0)|θ(T ))

〉
, (37)
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where p denotes the measure Eq. (30) on the path θ running forward in time
and q denotes the probability assigned to a path θ̃ by the measure Eq. (30) if
one reverses the temporal sequence of state traversals

θ̃(t) := θ(T − t) 0 ≤ t ≤ T.

The reversed path θ̃ is constructed such that its initial point θ̃(0) is identical
to the final point of the forward dynamics θ(T ), so θ̃(0) = θ(T ). The average
in Eq. (37) is over the ensemble of all paths that started at t = −∞, thus it is
identical to the expectation over all random initializations at t = 0.

Inserting θ̃ into the Lagrangian A Eq. (31) only the mixed term β/2 f(θ(t)) ·
∂tθ(t) changes sign, so that equation 37 reads

R1 = β
〈∫ T

0

[
f(θ(t)) · ∂t θ(t)

]
dt
〉

= β
〈∫ θ(T )

θ(0)

f(θ) · dθ
〉

= β (
〈
V (θ(0);D)

〉
−
〈
V (θ(T ),D)

〉
), (38)

where the penultimate line holds for any non-equilibrium Langevin dynamics
with time-independent force f(θ(t)) and the last line holds in case that f is
conservative. In the latter case, irreversibility depends linearly on the difference
in energy ∆V between initial and final state. Physically, this is the work that the
heat bath has exerted on the system [4, i.p. their Eq. (6)]. The irreversibility
R defined in Eq. (17) for a conservative force f = −∇θV thus is,

R = ⟨ln p(θ(0))⟩ − ⟨ln p(θ(T ))⟩ (39)

+ β
〈
V (θ(0))

〉
− β

〈
V (θ(T ))

〉
,

which corresponds to Eq. (6) in [4].

A.7 Irreversibility from stochastic velocity
We here show that, in the case of conservative forces, the irreversibility Eq. (39)
obtained from the initial and final equilibrium distribution is identical to the
dynamic expression Eq. (23). To show the equivalence, consider the temporal
change of the mean of any observable O(θ) is ∂t⟨O⟩ = ∂t

∫
Ω
p(θ, t)O(θ) dθ.

Choosing in particular V as the observable O = V the temporal change of the
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potential is

∂t ⟨V (θ(t))⟩ =
∫
Ω

V (θ(t)) ∂t p(θ, t) dθ (40)

(35)
= −

∫
Ω

V (θ)∇θ ·
[
v(θ, t) p(θ, t)

]
dθ

i.b.p.
=

∫
Ω

[
∇θV (θ)

]
· v(x, t) p(θ, t) dθ

= −
∫
Ω

f(θ) · v(θ, t) p(θ, t) dθ,

where we assumed that p(θ, t) declines sufficiently quickly with ∥θ∥ → ∞, so
boundary terms vanish when integrating by parts (i.b.p.). So we find∫

Ω

∥v(θ, t)∥2 p(θ, t) dθ

(36)
=

∫
Ω

[
f(θ)− β−1 ∇θ ln p(θ, t)

]
· v(θ, t) p(θ, t) dθ

(40)
= − ∂t⟨V (x(t))⟩ − β−1

∫
Ω

[
∇θ ln p(θ, t)

]
· v(x, t) p(θ, t) dθ.

Integration by parts of the latter integral, again using vanishing boundary terms
for ∥θ∥ → ∞, it is

−
∫
Ω

[
∇θ ln p(θ, t)

]
· v(θ, t) p(θ, t) dθ (41)

=

∫
Ω

ln p(θ, t)∇θ ·
[
v(θ, t) p(θ, t)

]
dθ

(35)
= −

∫
Ω

ln p(θ, t) ∂t p(θ, t) dθ.

The latter integral is identical to

− ∂t

∫
Ω

ln p(θ, t) p(θ, t) dθ (42)

=− ∂t

∫
Ω

p(θ, t) dθ︸ ︷︷ ︸
=0

−
∫
Ω

ln p(θ, t) ∂t p(θ, t) dθ.

So together we find the differential form of Eq. (23)

∫
Ω

∥v(θ, t)∥2 p(θ, t) dθ = −∂t ⟨V (θ(t))⟩ − β−1 ∂t

∫
Ω

ln p(θ, t) p(θ, t) dθ. (43)
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Taking the temporal integral over the interval [0, T ] we arrive at

β

∫ T

0

∫
Ω

∥v(θ, t)||2 p(θ, t) dθ dt = β ⟨V (θ(0))⟩ − β ⟨V (θ(T ))⟩ (44)

+ ⟨ln p(θ(0)⟩ − ⟨ln p(θ(T ))⟩
(39)
= R.

The last line is the difference in the entropy between the initial and final state
and the right-hand side is identical to Eq. (39).

The differential form equation 43, rewritten more briefly as,

⟨∥v(θ, t)∥2⟩ = −∂t
(
⟨V (θ(t))⟩+ β−1 ⟨ln p(θ, t)⟩

)
(45)

has an interesting interpretation. In equilibrium statistical mechanics one has
p(θ) = Z−1 e−βV (θ) which, taking the ln and then the expectation value over
p(θ), yields the usual relation

F := −β−1 ln Z = ⟨V (θ)⟩+ β−1 ⟨ln p(θ)⟩. (46)

between free energy F , inner energy ⟨V (θ)⟩, and entropy S = −kB ⟨ln p(θ)⟩.
So comparing the right-hand sides equation 45 and equation 46 and defining

a “time-dependent free energy” F (t) := ⟨V (θ(t))⟩+ β−1 ⟨ln p(θ(t))⟩, one has

∂tF (t) = −⟨∥v(θ, t)∥2⟩,

which, by the non-negativity of the right-hand side, shows that F (t) is a non-
increasing function under the Langevin dynamics. Integrated over time, t ∈
[0, T ] this yields

∆F = F (T )− F (0) = −
∫ T

0

⟨∥v(θ, t)∥2⟩ dt = −β−1 R.

Using the above formula for R as a function of the velocity field v and the
Fokker-Planck equation for the equilibrium density, p,

R =β

∫ T

0

∫
||v(θ, t)||2 p(θ, t) dθ dt (47)

=β

∫ T

0

∫ ∥∥J p(θ, t)

p(θ, t)
∥2 p(θ, t) dθ dt

=β

∫ T

0

∫ ∥∥J p(θ, t)
∥∥2

p(θ, t)
dθ dt

=β

∫ T

0

∫ ∥∥(f(θ)− β−1 ∇θ) p(θ, t)
∥∥2

p(θ, t)
dθ dt

=β

∫ T

0

∫
||f(θ)||2 p(θ, t)− 2β−1 f(θ) · ∇θp(θ, t) + β−2 ∇θp(θ, t) · ∇θp(θ, t)

p(θ, t)
dθ dt

=

∫ T

0

β ⟨||f(θ(t))||2⟩+ 2β−1 ⟨∇θ · f⟩+ β−1 ⟨||∇θ ln p||2⟩ dt,
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we obtain three terms with different powers in β.
In case of a conservative force, f = −∇θV this yields

R =

∫ T

0

β ⟨||∇θV (θ)||2⟩ − 2 ⟨∆θV ⟩+ β−1 ⟨||∇θ ln p||2⟩ dt, (48)

where ∆θ is the Laplace operator.

B Derivation of NTK-related results
Consider the gradient flow dynamics of the i-th parameter

dθi
dt

= −
∑
µ

∂fµ
∂θi

(fµ − yµ) (49)

where fµ = f(xµ) uses NTK parameterization (i.e. weights of order 1 and an
explicit 1/

√
width factor accompanying pre-activations), and yµ are the µ-th

target for µ ∈ [1, n]. The learning rate is taken to be one, η = 1.
Using SVD we can write

∂θifµ =
∑

λ∈Spec[NTK]

√
λuµ,λvλ,i (50)

where λ’s are the NTK spectrum (times the width) and the vectors uµ,λ or
vλ,i for two different λ’s are orthogonal. The NTK matrix evaluated at two
data points, µ, ν, is given by ΘNTK(xµ,xν) =

∑P
i=1 ∂θifµ∂θifν . Multiplying

the gradient flow equation with vλ,i and summing of i one has

∂tθλ =
∑
i

vλ,i
dθi
dt

= −
∑
iµ

∑
λ′∈Spec[NTK]

√
λ′(fµ − yµ)uµ,λ′vλ,ivλ′,i = −

√
λ∆λ(t)

(51)

where fλ =
∑

µ fµuµ,λ and, similarly with yλ and ∆λ(t) ≡ fλ(t) − yλ. The
statement that the NTK does not change with training at infinite width, im-
plies here that the SVD vectors and eigenvalue remain fixed. Furthermore, the
original NTK derivation showed that

∆λ(t) = e−λt∆λ(0) (52)

plugging this into the last equation we obtain

θλ(t) = θλ(0) +
1√
λ

[
e−λt − 1

]
∆λ(0) (53)

The Wasserstein-2 distance between a fixed initial state and the state at t
simplifies here to the L2 distance, yielding∑

λ

(θλ(∞)− θλ(0))
2 =

∑
λ

λ−1
[
e−λt − 1

]2
∆λ(0)

2 (54)
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Next we note that β−1R simplifies here to the decrease in train loss indeed

β−1R = η2
∫ T

0

dt(∇V )2 +O(β−1) = −η

∫ θ(T )

θ(0)

dθ(∇L) +O(β−1) (55)

= −η[L(θ(T ))− L(θ(0))] +O(β−1).

How optimal are the NTK dynamics? To quantify this, we study the time
bound over the actual training time, where the time bound is computed w.r.t.
θλ(t). The advantage of such a quantity is that it is independent of the arbitrary
learning rate (recall we already neglected discretization effects) and hence we
can take it to 1. Collecting the above results, this ratio is given by

TSL(t)

t
=

1

t

∑
λ λ

−1
[
e−λt − 1

]2
∆λ(0)

2∑
λ

∆λ(0)2

2 −
∑

λ
∆λ(t)2

2

=
2

t

∑
λ λ

−1
[
1− e−λt

]2
∆λ(0)

2∑
λ ∆λ(0)2 [1− e−2λt]

(56)

For a generic NTK kernel (ΘNTK) and any finite amount of data the ratio TSL
t

decays as 2∆(0)TΘ−1
NTK∆(0)

t|∆(0)|2 for large enough t. This decay as 1/t signifies the fact
that from some point onward, only exponentially weak (and hence negligible)
learning is taking place.

Less general and more interesting results could be obtained by making some
scaling assumptions on λ and ∆λ(0). Specifically, we assume λk = Λk−α and
∆2

λk
(0) = ∆2k−δ where k ∈ k⋆, . . . , n for some k⋆ ≥ 1, and ∆,Λ, α, δ > 0. We

further choose t ≈ λ−1
n such that many modes are learned, but some are still

left to be learned.
Consider first the Wasserstein-2 term,

∑
k

∆2
λk
(0)[1− e−λkt]2

λk
≈ ∆2

Λ

∫ n

k⋆

dk[1− e−Λk−αt]2k−δ+α, (57)

where our replacement of a summation by an integral is justified for high values
of k with an additional finite sum correction that is negligible in the limit of large
n. As we will show, the contribution from high k diverges with, T , and hence
these dominate over the low k part of the sum. Next making the substitution
x = Λk−αt (or k = [(Λt)/x]α

−1

) we find

∆2

Λ

∫ Λt

Λtn−α

dxkα+1(Λt)−1[1− e−x]2k−δ+α (58)

=
∆2

Λ

∫ Λt

Λtn−α

dx[(Λt)/x]α
−1+2−δ/α(Λt)−1[1− e−x]2 (59)

= ∆2Λα−1−δ/αtα
−1+1−δ/α

∫ Λt

Λtn−α

dxx−α−1−2+δ/α[1− e−x]2

Noting that [1− e−x]2 scales as x2 at low x the integral is non-divergent around
its lower limit for α−1(1− δ) < 1, hence taking this lower limit to zero does not
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change the overall asymptotic. Furthermore, for, α−1(1−δ)+1 > 0 the integral
is convergent around the upper limit (which is in fact the lower limit of the
original dk integration). Hence, as far as the large t asymptotic is concerned,
we find

W2 →
[
∆2Λα−1−δ/α

∫ ∞

0

dxx−α−1−2+δ/α[1− e−x]2
]
tα

−1+1−δ/α (60)

Next, we apply a similar line of reasoning to β−1R:∑
λ

∆λ(0)
2[1− e−2λt] =

∑
k

∆2k−δ[1− e−2Λk−αt] ≈
∫ n

1

dk∆2k−δ[1− e−2Λk−αt]

(61)

using the same substitution of variables we have∫ Λt

Λtn−α

dxkα+1−δ(Λt)−1[1− e−2x] =

∫ Λt

Λtn−α

dx[(Λt)/x]α
−1+1−δ/α(Λt)−1[1− e−2x]

(62)

= (Λt)α
−1(1−δ)

∫ Λt

Λtn−α

dx[1/x]α
−1+1−δ/α[1− e−2x]

Similarly to the Wasserstein-2 distance, for α−1(1−δ) < 1 the lower integration
boundary is convergent. For α−1(1−δ) > 0 the top integration boundary is also
convergent, leaving us with an tα

−1(1−δ) asymptotics. On the other hand, for
α−1(1− δ) < 0 it is divergent and therefore leading to an additional t−α−1(1−δ).
Recalling that α > 0 overall we find

β−1R →
[
Λα−1(1−δ)

∫ ∞

0

dx[1/x]α
−1+1−δ/α[1− e−2x]

]
tα

−1(1−δ) (1− δ) > 0

(63)

β−1R →
[
Λα−1(1−δ)][α−1(δ − 1)]−1

]
t0 (1− δ) < 0

Collecting these results, one arrives at those of the main text.

B.1 Geometric length of NTK trajectory
Next, we address the geometry of the curve in the weights’ space generated by
the training procedure. In general the length of a path γ⃗ parameterized by τ in
Euclidean space is

lγ =

∫ τmax

0

dτ
√

(∂τ γ⃗)2 (64)

in our NTK context τ = t and

γ⃗(t) =

(
1√
λ1

[
e−λ1t − 1

]
∆λ1(0),

1√
λ2

[
e−λ2t − 1

]
∆λ2(0), ...

)
(65)
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where we recall that ∆λ(0) = fλ(0)− gλ the latter being, respectively, network
output and target projected on the λ SVD eigenvector. The NTK trajectory
length is thus

lγ =

∫ t

0

dt

√∑
k

λke−2λkt∆2
λk
. (66)

To see some explicit dependence on the spectrum, namely that it is power law
λk = k−α and that, ∆2

λk
= ∆2k−δ with α > 0, , δ ≥ 0 and hence independent

of k. Following this, we approximate

lγ ≈ |∆|
∫ t

0

dt

√∫ d

1

dkk−α−δe−2k−αt (67)

= |∆|
∫ t

0

dt

√∫ 2t

2td−α

dx(2tα)−1(x/2t)−1/α(x/2t)δ/αe−x (68)

= |∆|
∫ t

0

dt(2tα)−1/2(2t)1/(2α)−δ/(2α)

√∫ 2t

2td−α

dxx−1/α+δ/αe−x,

where we used the change of variables x = 2k−αt. At least for α > 1, the dx
integration is non-singular at small x hence for t ≪ 1/λn, such that the lowest
eigenmodes are non-learnable, we can replace the lower integration boundary
by zero. Following this we obtain a lower incomplete gamma function

|∆|
∫ t

0

dt(2tα)−1/2t1/(2α)−δ/(2α)

√∫ 2t

0

dxx−1/α+δ/αe−x (69)

≡ |∆|
∫ t

0

dt(2tα)−1/2t1/(2α)−δ/(2α)
√
γ(1− α−1 + δ/α, 2t)

Notably at large t (and correspondingly large d), the above integral is dominated
by a t(1+α−1−δ/α)/2 divergence as γ(1 − α−1 + δ/α, 2t) → Γ(1 − α−1 + δ/α).
No other factors, outside O(1) factor, multiply this divergence. This divergence
reflects the fact that the path gets longer as more and more modes are being
learned. Examining potential divergences around t = 0 (this time for the special
case of δ = 0) one can expand around t = 0 yielding

|∆|
∫ t

0

dt(2tα)−1/2(2t)1/(2α)
√
γ(1− α−1, 2t) (70)

= |∆|
∫ t

0

dt(2tα)−1/2(2t)1/(2α)

√√√√(2t)1−α−1Γ(1− α−1)e−2t

∞∑
j=0

(2t)j

Γ(1− α−1 + j + 1)

= |∆|
√
Γ(1− α−1)/α

∫ t

0

dt(2t)−1/(2α)(2t)1/(2α)e−t

√√√√ ∞∑
j=0

(2t)j

Γ(1− α−1 + j + 1)
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hence for α > 0 we see no low t divergence.
These two results, especially the long t divergence, should be compared with

the L2 distance of a straight-line trajectory at time t given by

l2geo =
∑
λ

∆λ(0)
2[1− e−λt]2

λ
≈

tα
−1∑

k=0

∆λk
(0)2

k−α
(71)

where we made a heuristic approximation and sharply separated learnable and
unlearnable modes as those with tλ > 1 and tλ < 1 (specifically we took [1 −
e−λt]2 to be 1 for the former and zero for the latter).

Next, making the same assumptions as those carried for the NTK trajectory,
we find

lgeo = |∆|

√∫ tα−1

1

dkkα−δ = |∆|
√

(α− δ)−1[t(α−δ+1)/α − 1] (72)

thus we find a divergence going as t(α
−1+1−δ/α)/2. Comparing both asymptotic

we find

lgeo(t) ∝ t(α
−1+1−δ/α)/2 (73)

lγ(t) ∝ t(α
−1+1−δ/α)/2

Interestingly, we find the same asymptotic for the lengths, independent of α and
δ (for α > 0, δ > 0 and (α−1 + 1− δ/α) > 0).

C Linear regression in high dimension
Consider the problem of linear regression with scalar output, given a dataset
Dn = {xµ, yµ}nµ=1 = {X,y} where X ∈ Rd×n, and y ∈ Rn. Our estimator for
the output is a plugin estimator (student model) ŷ(x;θ) = θTx. We aim to
minimize the loss function L̂(θ) = 1

2

∑
µ(yµ − ŷ(xµ;θ))

2, and find the optimal
estimator for θ via Langevin algorithm with learning rate η

dθ(t) = −η

(∑
µ

(yµ − θ(t)Txµ)xµ +
λd

β
θ(t)

)
dt+

√
2ηβ−1dB(t). (74)

The equilibrium distribution of this process matches the Bayesian posterior
distribution which is independent of the learning rate. To be more concrete, we
evaluate the bound given the following noiseless target model yµ = θT

⋆ xµ with
θ⋆ ∼ N (0, α/dId), and xµ are i.i.d. vectors with i.i.d. entries.

In order to calculate the speed limit, we need to evaluate the Wasserstein-
2 distance and the entropy production. Due to the linearity of this model,
and the Gaussian assumption, all these quantities can be calculated exactly.
In particular, both initial and final distributions are Gaussian, i.e., θ0 ∼ p0 =

23



N (0, (λd)−1Id), and θT ∼ pT = N (µT , (β)
−1ΣT ), where ΣT =

(
XXT + cnId

)−1,
where cn = cd, c = λ/β and µT = ΣTXy.

In the following, we take the leraning rate η = 1/n. Note that, the Wasserstein-
2 is invariant to changes in the learning rate, whereas the β−1R will be af-
fected by it. We start by calculating the partition functions, at initialization,
Z0 = (2π/(λd))d/2, and at the end of the training,

ZT (Dn) =

∫
e−

λd
2 ∥θ∥2− β

2 (y−θTX)T(y−θTX)dθ

=
(
|ΣT |(2π/β)d

)1/2
e−

β
2 ∥y∥2+ 1

2βy
TXTΣTXy (75)

The entropy production (equation 21) is then,

(nβ)−1R = (nβ)−1 logZT (Dn)− (nβ)−1 logZ0 +
1

n
⟨L(θ(0))⟩ (76)

=
γn
2β

log(cd) +
1

2βn
log |ΣT |+

1

2n
∥Σ−1/2

T µT ∥2 +
1

2λdn
Tr
(
XXT

)
=

γn
2β

log(c)− 1

2nβ
log |cId +

1

d
XXT|

+
1

2d2n
Tr

((
cId +

1

d
XXT

)−1 (
XXT

)2
θ⋆θ

T
⋆

)
+

1

2λdn
Tr
(
XXT

)
, (77)

where γn = d/n. Since both distributions at initialization and at the end of
training are Gaussian, the Wasserstein distance can be calculated exactly,

W 2(p0,pT ) = ∥µ0 − µT ∥2 +Tr

(
Σ0 + β−1ΣT − 2β−1/2

(
Σ

1/2
T Σ0Σ

1/2
T

)1/2)
= ∥µT ∥2 + λ−1 + β−1Tr (ΣT )− 2(βλ)−1/2d−1/2Tr

(
Σ

1/2
T

)
=

1

d2
Tr

((
cId +

1

d
XXT

)−2 (
XXT

)2
θ⋆θ

T
⋆

)
+λ−1+

1

βd
Tr

((
cId +

1

d
XXT

)−1
)

− 2(βλ)−1/2d−1Tr

((
cId +

1

d
XXT

)−1/2
)
.

where Σ0 = 1/(λd)Id The speed limit bound, equation 7, is then,

T (Dn) ≥
W 2(p0,pT )

β−1R
≡ TSL (78)

We note that the analysis here can be generalized to other data distributions
(see section B). In the regime, where γn = d/n → γ ∈ (0,∞), and d, n → ∞,
the results simplify. Taking expectation over θ⋆ and using the concentration of
quadratic forms, the speed limit bound is, then,
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TSL =
λ−1 + α

∫
(cγ + s)

−2
s2dρ(s) + β−1

∫
(c+ s/γ)

−1
dρ(s)

γ
2β log(c)− γ

2β

∫
log |c+ s/γ|dρ(s) + 1

2λ

∫
sdρ(s)

−
2(βλ)−1/2

∫
(c+ s/γ)

−1/2
dρ(s)

γ
2β log(c)− γ

2β

∫
log |c+ s/γ|dρ(s) + 1

2λ

∫
sdρ(s)

+ o(1) (79)

where ρ here is the limiting measure of the eigenvalues of 1
nXXT for i.i.d en-

tries and samples, known as the Marchenko–Pastur distribution. It takes the
following form

ρ(x) =

{
(1− 1

γ )δ(x) + ν(x), if γ > 1

ν(x), if 0 ≤ γ ≤ 1,

with, ν(x) = 1
2π

√
(γ+−x)(x−γ−)

γx 1x∈[γ−,γ+], such that, γ± = (1±√
γ)2 where δ(x)

is the Dirac delta function.
Interestingly, taking the limit of β → ∞ in equation 79 (note that c → 0,

because c = λ/β). The speed limit is then

TSL(β → ∞) → λ−1 + α
1
2λ

∫
sdρ(s)

. (80)

Note that, taking now the limit of d → ∞ (γ → ∞) corresponds to d ≫ n, we
get that

lim
d→∞

lim
β→∞

TSL = 2(1 + αλ).

In this regime, the weight decay term generates additional noise due to over-
parametrization.

On the other hand, if we take β → 0 we get

TSL(β → 0) → 0. (81)

In this regime, the system is driven by noise, and there is essentially no learning.
In the over-parametrized regime in which d → ∞, and d ≫ n (γ → ∞) we have
that

TSL(d → ∞) → 0 (82)

This shows that when the system is extremely over parametrized the distribution
is barely moving from its initial condition. We note that as shown above that
will not be the case in zero noise. I.e. the limit of d → ∞ does not commute
with the limit of β → ∞.

Last, as n → ∞, (γ → 0) corresponds to n ≫ d, the bound reaches the
following finite value:

TSL(n → ∞) → 2λα. (83)

This limit is in essence where we learn the population error i.e. the expecta-
tion of the loss function over the true dataset distribution. Remarkably, it is
independent of the amount of noise β.
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