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I present results obtained in four very distinct areas. In Chapter 1, I investigate

vector based embedding models for text as applied to a corpus of scientific arti-

cles from the arχiv . I report on the utility of the learned word representations,

and experiment with several techniques for learning vector representations for

articles. I go on to discuss extensions to categories, authors, and readers, and the

utility these would provide for enhancing the experience of arχiv users. Chap-

ter 2 reviews work in the field of text segmentation, in particular the segmenta-

tion of long sequences of text into coherent topical sections. I introduce a novel

segmentation algorithm that achieves state of the art results on a standard test

set. Chapter 3 investigates a model of the fictional disease: zombies. I use zom-

bism as an entertaining platform for investigating and exploring techniques in

epidemiology modelling and critical phenomena. Chapter 4 summarizes work

done towards building a group theoretic framework for creating generalized

free energy expansions for elasticity. I found the first 50 terms in the expansion

and show that these can be reliably fit to simulated data.
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CHAPTER 1

ARXIV

We use several modern methods for learning vector representations of words

to analyze a corpus derived from arχiv articles. We try various methods for ex-

tending the word vectors to power vector representations of articles and evalu-

ate their performance on various metrics, both quantitative and qualitative. We

discuss schemes for extending these methods to learn vector representations of

articles, words, contexts, categories, authors and readers simultaneously, and

discuss the possible applications of these representations.

1.1 Statistical Mechanics of Words

In Statistical Mechanics, we are used to studying complicated systems with

many degrees of freedom. In its nearly 200 years of development, a single cen-

tral lesson has emerged. It is to embrace the old maxim: if you don’t have anything

nice to say, don’t say anything at all. A surprisingly powerful method for dealing

with and describing a system you know very little about is to express only that

little, nice, bit you know, and let the rest remain as random, or as unsaid as

possible. We’re speaking, cryptically, about the principle of maximum entropy.

In order to leave things unsaid, we first need to quantity a notion of ‘unsaid-

edness’, or uncertainty. As Shannon taught us [92], there is unique mathematical

form that measures the uncertainty of a probability distribution subject to three

simple constraints. The measure must be positive, monotonic in the number of

states, and decompose linearly over independent subsystems. That measure is

1



the entropy:

H(x) = −
∑

i

P(xi) log P(xi) . (1.1)

What then does this principle look like? Assume we are forced to attempt to

explain a system. We know very little about this system. It is large, complicated

and there is a lot going on. But, we have the opportunity to measure a small set

of expectations, or averages, (φk) of our system for some set of functions ( fk):

φk =
∑

i

P(xi) fk(xi) . (1.2)

What is the probability distribution (P(x)) that conforms with these expecta-

tions, but is otherwise as noncommittal as possible? We can solve for it. Let’s

simply maximize the entropy, subject to the constraints that the probability dis-

tribution is normalized, and that it conforms to the measured expectations.

P(x) = arg max

−∑
i

P(xi) log P(xi) − β0

1 −∑
x

P(x)

 +
∑

k

βk

φk −
∑

i

P(xi) fk(xi)




(1.3)

Taking the variation with respect to P(xi) we find a condition that must vanish:

0 =
∑

i

[
− log P(xi) − 1 − β0 − βk fk

]
. (1.4)

which implies the maximum entropy distribution takes the form:

P(xi) =
1
Z

exp

−∑
k

βk fk(xi)

 , (1.5)

where Z is our normalization constant, or partition function:

Z =
∑

i

exp

−∑
k

βk fk(xi)

 (1.6)

where the values of the Lagrange multipliers (βk) can be determined from the

observed expectations:

φk = 〈 fk〉 =
∑

i

P(xi) fk(xi) = −
∂

∂βk
log Z . (1.7)
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Imagine we have a physical system that can take on a tremendous number of

individual states si, each of which has a particular energy E(si). If all we know

about the system is its average energy (〈E〉), the principle of maximum entropy

suggests that we take as the probability distribution over all possible states:

P(si) =
1
Z

exp (−βE(si)) . (1.8)

The fact that this is the Boltzmann distribution of statistical mechanics is no

accident. All of statistical mechanics can be formulated in terms of the principle

of maximum entropy [41, 42].

1.1.1 Words

With this principle in mind, we attempt to formulate a theory of word usage.

We will proceed similar to the way Stephens and Bialek modelled the distribu-

tion of letters in 4-letter English words [98]. The goal here is ultimately some

description for the probability of a sequence of words occurring in a stream of

text.

P(w1,w2,w3, · · · ,wn,wn+1, · · · ) (1.9)

Assume a very long sequences of words, and that this probability distribution

is locally homogeneous. Further, we’ll assume that the only expectations we are

willing to specify are the cooccurrence statistics of pairs of words. This enables

us, by the principle of maximum entropy to state that our best guess for the

probability distribution for a sequence of words is:

P({wi}) ∝ exp

−∑
i

∑
k

Jk(wi,wi+k)

 (1.10)

That is, assuming homogeneity and some observed cooccurrence statistics,

streams of words in text behave as if they were governed by pairwise inter-
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actions between the words, where in general the interaction potentials would

be different for every possible displacement k. Each one of these potentials will

have a term involving every possible pair of words. If we assume our vocab-

ulary is on the order of 100,000 words, specifying this language model would

would require specifying (100, 000)2 × K ∼ K × 1010 parameters for interactions

up to distance K.

To make further progress requires simplifying assumptions. Let’s assume

that the interaction decays with distance, and that Vk = V(K − k). That is, the

pairwise interactions are the same at every separation, but they decay linearly

up to some cutoff K. This still leaves a very large set of parameters for specifying

the interaction. Next, assume that the interaction between any pair of words is

symmetric, so that Vi j ≡ V(wi,w j) = V(w j,wi) = V ji, which will cut the number of

parameters roughly in half.

At this point we will have ∼ 1
2 × 1010 parameters in our model. To make

further progress requires boldness. Assume that this interaction matrix is low

rank. That is, represent our interaction Vi j as the product of a much smaller

matrix Wik with its transpose:

Vi j =
∑

m

WimW jm . (1.11)

With all of these simplifying assumptions, we obtain a model for the proba-

bility of a sequence of words occurring in text of the form:

P({wi}) ∝
∏

i,k

exp

−(K − k)
∑

m

WimW(i+k)m

 (1.12)

This model only has ∼ D × 105 parameters, where D is the rank chosen for the

decomposition. Notice also that the matrix W can be interpreted as defining a D

dimensional vector for each word.
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This is essentially the model we will study throughout this Chapter, and

various small modifications of it. It turns out to be a very powerful model for

text, and the vectors that represent each word turn out to encode some very

interesting relationships between words if taken seriously.

1.2 Modern Vector Based Representations

Here we give an introduction and overview to various modern methods for

learning vector representations for words.

1.3 word2vec

Vector based word representations are not new, but have seen a renewed in-

terest following the series of papers by Mikolov and collaborators introducing

word2vec [59, 62, 63]. At its heart, word2vec attempts to learn a vector to rep-

resent each word, where the dot products between different words encode their

likelihood of cooccurring in the document, and where cooccurrence is measured

as appearing together in some small window in the text.

1.3.1 Architectures

The original word2vec paper [59] offered two different architectures, the first

of which was the continuous bag of words or CBOW method.

In CBOW, we attempt to use the vectors for the words surrounding a given
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+

wi−1

wi−2

wi+1

wi+2

wi
p

Figure 1.1: The continuous bag of words model uses the vectors for the surround-
ing words to build up a vector for the local context, originally by
adding those vectors together. It then uses that feature vector to pre-
dict the central word using a classifier.

word to build up a representation of the local context. In the original paper, this

was done by adding all of the surrounding word vectors together. This input

vector is then used to try to predict the given word, by utilizing a softmax layer.

A softmax is a differentiable version of a max function, defined as:

σ(xi) =
exi∑
j ex j

. (1.13)

When any one of the inputs is large compared to the rest, the softmax will set

that input near one, and the rest to near zero. A schematic of the CBOW archi-

tecture is shown in Figure 1.1.

In the original work, the CBOW model did not perform as well as the skip-

gram model, described below. Much of the follow-up work on word2vec and

vector embeddings more generally have focused on other architectures, but we

mention CBOW here given its similarity to some of the models we will explore
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for article vectors.

The second suggested architecture, and the more successful one in their ex-

periments was the skip-gram model [59]. Here we use each word to try to predict

each of the words that surround it. A schematic of the architecture is shown

below in Figure 1.2

wi−1

wi−2

wi+1

wi+2

wi

p

p

p

p

Figure 1.2: The skip-gram model uses the vector for the current word to predict
each of the surrounding words using a classifier.

We want the arrows to denote a sort of classifier that uses the input to pro-

duce a probability distribution over the possible output words. A natural choice

for this would be to use a Boltzmann distribution over the outputs, in terms of

some energy function depending on both the output and input:

p(o|i) =
e−E(o,i)∑

o′∈O e−E(o′,i) =
1

Z(i)
e−E(o,i) . (1.14)

We need to define our energy function, and consequently, our representation.

For our representation, we will choose a vector in an n-dimensional space. A

natural energy function then is a simple linear function, namely the dot product
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between our input vector and output vector:

E(o, i) = −o · i (1.15)

Where (o, i) is the vector representing the (output, input) respectfully, and we’ve

chosen our energy to correspond to the ferromagnetic case, wherein our vectors

want to point in the same direction. We have just defined an instance of the

common log-linear model, used throughout natural language research [7]. This

is also the model we motivated by appeals to maximizing the entropy of the

distribution in the introduction.

1.3.2 Log Linear Model

The log linear model can be considered an explicit form for the conditional

probabilities, where the log probability of a nearby word wi+k occurring, con-

ditioned on the occurrence of the central word wi, will be proportional to their

dot product:

log P(wi+k|wi) ∝ w j · wi . (1.16)

Here wi represents the vector associated with word wi. The properly normalized

conditional probability takes the form:

P(w j|wi) =
exp

(
w j · wi

)∑
k exp (wk · wi)

=
1
Zi

exp
(
w j · wi

)
. (1.17)

Zi represents the partition function for word wi. This conditional probability func-

tion takes the form of a softmax function (1.13) in terms of the dot product be-

tween the word vectors.

In other words, at a particular point in our document, we will use the vector

wi to represent word wi, and we wish to predict a nearby word (w j). We consider
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all possible candidates {w j}with associated vectors {w j} and assign probabilities

as Boltzmann factors of an energy defined as the dot product between the word

vectors. As a result, word vectors that point together are said together. The

normalization afforded by the partition function ensures that we don’t get too

carried away and assign arbitrary weight to a pair of words cooccurring. If we

simply increase the lengths of a pair of word vectors, the probability will remain

properly normalized, and we will simply assign more probability mass to that

pair.

The total log likelihood for our entire corpus is then

L =
∑

i

∑
k∈[−w,w],k,0

log P(wi+k|wi) . (1.18)

Having defined what should be a suitable objective, it remains to try to train

it. Given that the objective is differentiable, one could imagine proceeding by

some form of gradient based optimization, some details of which we’ll discuss

later, but the objective as it is currently defined is particularly hard to train. It

is precisely the presence of the partition function term, which helps ensure that

the word vectors do not just grow unbounded in magnitude, that presents the

largest computational hurdle. If we were to take the objective at face value, for

every pair of words we took to be in cooccurrence, we would have to evaluate

the sum of the exponentials of the dot products with every word in our vocab-

ulary. But for a large corpus, the vocabulary can be expected to be on the order

of millions. The real contribution of the word2vec papers and associated code

was to contribute practical techniques for mitigating this challenge. Below, we

will summarize the two main approaches. More information about the details

of the word2vec objective can be found in [87, 30, 62].
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1.3.3 Hierarchical Softmax

The first way to attack the problem of the partition function is to employ the

rather clever trick of hierarchical softmax [59, 65, 67]. Hierarchical softmax allows

an approximation to the partition function, which itself involves a sum over N

terms, with an approximate function that involves a sum over, on average, log N

terms.

At its heart, hierarchical softmax relies on the ability to factor conditional

probability distributions over classes. Imagine that we assign each word to a

single class, or cluster, c(w) = k. Then we can write:

P(w|v) =
∑

k

P(w, c = k|v) =
∑

k

P(w|c = k, v)P(c = k|v) = P(w|c = c(w), v)P(c = c(w)|v) ,

(1.19)

since each word is a assigned to a single cluster. The important thing to note

is that in order to normalize P(w|v) we would need to do a sum over N where

N is the number of words in our vocabulary. To normalize the right hand side,

we would need only sum over the number of words in the associated class, and

the number of classes. So if we have 100 words, split into 10 classes of 10 words

each, instead of a normalization over 100 terms, we need only normalize two

terms each with 10 terms. This is a large saving. Granted, it requires a new sort

of model, were we model the word occurrences dependent on the nearby word

and class label, as well as an independent model for the expected class given

the word we condition on. This original trick was pointed out in [31].

For hierarchical softmax, we take this idea to its extreme and turn the parti-

tion function into a sequence of binary decision processes. If we represent the

entire vocabulary in a binary tree, with leaves for each word, there will be N
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total leaves, and N − 1 total internal nodes. In this new tree, each word can be

reached by a particular path from the root node down to the corresponding leaf.

That path is specified by the Huffman code for the word in question, a binary

string of variable length, where we could take 0s in the code to denote moving

to the left child and 1s as moving to the right.

w1

000

w2

001

w3

01

w4

11

... wV−1 wV

n(w2, 3)

n(w2, 2)

n(w2, 1)

Figure 1.3: An example binary tree and the relationship between leaf nodes for
the words, and inner nodes defining a path from the root to the
words.

An example of a binary tree is shown in Figure 1.3, which has been recreated

from [87]. The new representation of the conditional probability of a word given

the input is given by, in equation (3) of [62]:

P(w|wI) =

L(w)−1∏
j=1

σ
(
[[n(w, j + 1) = ch(n(w, j))]]v′n(w, j) · wI

)
. (1.20)

Here wI is our input vector. The v′ are the vectors representing each of our inner

nodes. n(w, j) is the jth parent of the leaf node w. ch(n) represents the right child
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of node n. [[·]] represents the binary function, which returns 1 if the argument is

true, and -1 if it is false. σ is the sigmoid function

σ(z) = 1/(1 + e−z) . (1.21)

L(w) is the length of the code for word w.

Trying to dissect this equation, we can think of the process of predicting a

word, given some input, as taking a random walk through this binary tree. Each

inner node of the tree has an associated vector, and we use the sigmoid of the

dot product between the node vector and our input vector to decide whether

we should go to the right or left child of that node. That is to say, we train

a logistic classifier at each inner node to determine whether we should go left

or right. The probability then of reaching a particular word w, is given by the

series of choices we need to make to reach that word. For the example encoded

in Figure 1.3, if we are trying to reach word w2, the correct path to follow has

the following probability

P(w|wI) = P(left at n(w2, 1))P(left at n(w2, 2))P(right at n(w2, 3)) (1.22)

= σ(vn(w2,1) · wI)σ(vn(w2,2) · wI)
(
1 − σ(vn(w2,3) · wI)

)
(1.23)

= σ(vn(w2,1) · wI)σ(vn(w2,2) · wI)σ(−vn(w2,3) · wI) (1.24)

Where in the last line, we have utilized the fact that 1 − σ(z) = σ(−z). You’ll

notice that this turns determining the conditional probability of a given word

into a calculation of the product of L(w) terms, where L(w) is the length of the

code for word w. If we use the Huffman tree as our binary tree, the average code

length for each word will be the log of the size of our vocabulary: log V .

Notice also that this conditional probability is properly normalized, by its

construction. The probabilities of going left or right at each node sum to one,
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and any word has a well defined probability, so the sum of the probabilities for

all of the leaves will sum to 1. In effect, hierarchical softmax allows us to con-

struct an explicit realization of a normalized conditional distribution, in terms

of V − 1 unknown vectors which we aim to learn.

This also means that when we use hierarchical softmax, during training we

will be learning a set of vectors for each word, and a set of vectors for each of

these inner nodes. That second set does not correspond to another set of word

vectors, just the parameters for this explicit normalized conditional probability

model.

This is an approximation to our true skipgram objective (Equation 1.18), but

an efficient one, replacing the partition function with a factorized conditional

probability model. In practice, this approximation works well. Hierarchical

softmax in general seems to depend somewhat sensitively on the particular

choice of binary tree (see [65]), but the Huffman encoding works well for word

vectors in practice.

1.3.4 Negative Sampling

The second approach to bypassing the partition function is also to switch objec-

tives. Inspired by the idea of Noise Contrastive Estimation [66], we imagine a

modified task, namely trying to distinguish the observed data from a model of

noise. In the end, we have a new objective:

L =
∑

i

∑
k∈n(i)

logσ(wi+k · wi) +
1
N

∑
i

N∑
n=1

logσ(−vn · wi) (1.25)
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In the second term, there is a sum of N draws of random words vn, drawn from

a noise distribution Pnoise(v), taken as proportional to the unigram probability

distribution raised to the power of α (P(w)α). This can be interpreted as trying

to train a logistic classifier to distinguish our data from the noise [30].

Following the discussion in [30], we can make sense of this objective. Instead

of trying to learn the normalized conditional probabilities for the neighboring

words given their center, we could instead try to learn to distinguish true data

for pairs of nearby words from false data. In particular, let’s say we had a model

for P(true data|w, c), the probability that the word and context pair came from

our actual dataset. This coupled with a process to generate random data, sug-

gests the complement:

P(noise|w, c) = 1 − P(true data|w, c) . (1.26)

To model these binary decisions (is the pair true or false?) we could use a

logistic classifier, powered by vector representations for the words and contexts:

P(true|w, c) = σ(w · c) . (1.27)

Here σ(z) is the sigmoid function of Equation 1.21.

It is clear to see what the negative sampling objective is doing. The first term

tries to make words that occur together point together, but since we’ve dropped

our partition function, we could arbitrarily increase this likelihood by just hav-

ing all of the word vectors point in the same direction and have an arbitrary

length. It is the second term that tries to do the job of the original partition func-

tion at restricting our vectors to be nontrivial, by attempting to make random

pairs of words point in opposite directions. This can be thought of as a type of

regularization, which prevents our model from overfitting.

14



Figure 1.4: Using a noise distribution that is a power law scaling of the unigram
distribution has the effect of moving probability mass towards the
rarer words, provided the exponent is less than 1.

In [62], the noise was constructed explicitly at each word. That is, every time

we considered a cooccurring pair of words in the corpus, we would take a single

step of gradient descent to align the two word vectors, and then generate a fixed

number of false target words, drawn from the unigram distribution to the 3/4

power:

Pnoise(wi) ∝ (counti)3/4 . (1.28)

The choice of power is somewhat experimental. Overall, you can think of the

power law scaling of the unigram distribution as a form of smoothing, which

moves probability mass from the most common words towards the less com-

mon words, provided the exponent is less than 1. Below in Figure 1.4, We’ve

shown the probability distribution for a collection of words that follow a per-

fect Zipf law distribution, and the effect that the power law scaling has on the

probability distribution, for two choices of power law, one less than 1 and one

greater than 1.
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This smoothing turns out to be very important. In a paper by Levy and Gold-

berg [55], the smoothing was one of the most important tweaks to the word2vec

method that gave improved performance. The same smoothing can be easily

generalized to other types of models and effect similar improvements. In fact,

word2vec employs several tricks that improve its performance relative to other

methods [55], including subsampling frequently occurring words before gener-

ating the windows, and dynamic window sizes that place more weight towards

the closer words.

Another important distinction between negative sampling and hierarchi-

cal softmax is that negative sampling builds two different sets of word vec-

tors, those for ‘words’ and those for ‘contexts’. Normally, as in the original

word2vec paper, just the word representations are extracted and used, but we

could just as well consider the vector representations for the ‘contexts’, where

there will similarly be a single vector for each word in our corpus. We could

go yet further and combine these two representations, representing each word

by the vector which is the sum of these two different representations. This was

originally done in [78] for a competing method, and improved performance

generally [55].

1.4 GloVe

In practice, the word2vec objective is trained as a streaming objective. The

objective is minimized by reading the corpus a single word at a time in a single

pass. Alternatively, one could turn the local streaming objective into a global

one that operates on the total cooccurrence statistics for each pair of words. This
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is the idea behind a competing framework: GloVe [78].

The GloVe objective is:

U =
∑

i j

f (Xi j)
(
wi · w′j + bi + b′j − log Xi j

)2
. (1.29)

Here Xi j is the total number of times wi and w j cooccur the corpus, wi and w′i are

two separate sets of vectors representing words: one called the word vectors

(wi) and the other called the context vectors (w′i). The bi, b′i represent bias terms

for each word and associated context word, and f is a weighting function, taken

in the work to be:

f (x) =


(

x
x0

)α
x < x0

1 x ≥ x0

. (1.30)

This weight function is sublinear with exponent α = 3/4 for counts less than

some threshold x0 = 100 and 1 for all counts above the threshold. This has

the effect of putting more weight on our loss terms as the counts get higher,

up to some threshold x0. Given that we approximate the cooccurrences with

empirical counts from a fixed size corpus, this helps to lessen the contribution

of low counts, where the noise is expected to be largest.

You should consider this objective as a weighted matrix factorization. It at-

tempts to represent the matrix log Xi j as the product of two matrices with bias

terms. The fidelity of the representation is measured by taking the square of

the difference between the reconstruction and the original, similar to a Frobe-

nius norm, with the caveat that it is weighted to reduce the influence of matrix

elements that are small. Smaller elements contribute less to the overall loss.

Why should we be so interested in faithfully representing log Xi j? As the

GloVe article notes [78], the ratios of conditional probabilities for words can be

17



very discerning. Consider:
P(w|ice)

P(w|steam)
, (1.31)

the ratio of a cooccurrence of a word with both ‘ice’ and ‘steam’. For a word like

‘solid’, this ratio will be large. For ‘gas’ it should be small. For unrelated words,

such as ‘hat’, we expect this ratio should be near one. For words that apply to

both, such as ‘water’, it should also be near one.

The conditional probabilities can be estimated from the observed word cooc-

currence counts:

P(i| j) =
Xi j

X j
. (1.32)

Here X j is the number of times word w j appears in the corpus. This suggests

meaningful relationships between words are reflected in the ratios of cooccur-

rence counts
P(k|i)
P(k| j)

=
Xki

Xk j

X j

Xi
(1.33)

We want to encode these meanings, which are reflected in ratios, in terms of a

linear structure on word vectors, which suggests we encode the logarithm of

this relationship:

wk · (w′i − w′j) ∼ (log Xki − log Xi − log Xk) − (log Xk j − log X j − log Xk) , (1.34)

where we have added and subtracted log Xk on the right hand side. This brings

us to and objective of the form:

wi · w′j ∼ log Xi j − log Xi − log X j . (1.35)

In the GloVe method proper, we allow a general bias term that we additionally

learn:

wi · w′j ∼ log Xi j − bi − b′j . (1.36)
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To enforce this structure, a very natural loss is the quadratic loss:

(
wi · w′j + bi + b j − log Xi j

)2
. (1.37)

The GloVe objective attempts to enforce this structure for all pairs of words

(i, j), with a weighting term that both de-emphasizes the contribution of the

low count cooccurrences, and avoids the singularity present for Xi j = 0.

1.5 arχiv Dataset

This work focusses on applying vector based methods to a dataset corpus de-

rived from the arχiv [2]. The arχiv is a preprint repository of scientific articles.

In an effort to encourage access to scientific work, and to help speed the flow

of collaboration and access, researchers are encouraged to upload a preprint

version of their work to an online repository, viewable by all. Currently run

by the Cornell University Library system with help from donations contributed

by other major university libraries, as of the time of this writing, the arχiv has

1,034,387 e-prints available to read, in various subject areas spanning Physics,

Mathematics, Computer Science, Quantitative Biology, Quantitative Finance,

and Statistics.

For most of our analysis here, we will focus on a subset of the arχiv articles,

namely those uploaded in January, February and March of 2015. This consists

of 25,142 articles after hand pruning a few.
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1.5.1 Preprocessing

Authors are encouraged to upload the raw TEX or LATEX for their article, and the

arχiv makes the raw source as well as pdfs available. However, some authors

choose only to upload a compiled pdf of their work. For uniformity, our dataset

then consists of text extracted from these pdfs, using the pdf2txt.py python

utility.

Unfortunately, pdfs are not the most amenable to text extraction. In particu-

lar, a large amount of mathematical equations and notation tends to be garbled

by the translation process. We preprocess the raw utf-8 encoded text to re-

move all non-ASCII characters, replacing each with a space. The text is then

lowercased. Some characters fail to be converted by pdf2txt.py, because of

encoding or font issues. These are represented by ‘UNK’ in our corpus. We then

remove any pure number, so that ‘word2vec’ would be allowed but 1230 would

be removed. We also make each article a single line. This leaves us with a nearly

1 gigabyte ASCII corpus with 25,142 lines, one for each article.

1.5.2 Mutual Information of Nearby Words

Since the previous methods are powered by word cooccurrence, we could ask

the simple question: How much does a word influence its neighboring words?

In an effort to answer that, we can attempt to calculate the mutual information

I(wi,wi+k) between a word and a word some finite distance away from it. In order

to facilitate computation, we will utilize the fact that the mutual information

is the sum of the entropies of each random variable alone, minus their joint
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entropy:

I(wi,wi+k) = H(wi) + H(wi+k) − H(wi,wi+k) . (1.38)

By observing the frequencies of pairs of words occurring a fixed distance apart,

we can obtain an estimate of the mutual information between those words. No-

tice first that for our raw vocabulary of 85,515 words that occur at least 30 times,

the mutual information of a word with itself is just its entropy, which we ob-

serve to be 10.2 bits. Below in Figure 1.5 We’ve plotted the mutual information

as a function of word separation.

Figure 1.5: The observed empirical mutual informations for words a fixed dis-
tance apart, for the raw vocabulary of terms appearing at least 30
times in the arχiv corpus. Notice that this mutual information de-
cays rapidly initially, but has a long tail as we move to larger sepa-
rations. The mutual information drops below 1 bit at a 5 word sep-
aration, suggesting that we need not consider windows that are too
large when we try to learn our vector representations.

Between a given word and its neighbor, there are 2.6 bits of mutual infor-

mation. Seen another way, this means that if we observe a word, the residual

entropy for the next word (H(wi+1|wi) = H(wi+1) − I(wi,wi+1)) is only 7.6 bits. If

words occurred with equal frequency, this would correspond to a drop in the
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size of the vocabulary from 210.2 ∼ 1, 200 words to only 27.6 ∼ 200 words. This is

a large reduction in complexity. The mutual information decreases as we get to

larger word separations, as can be expected, but has a long tail, with 0.85 bits of

mutual information remaining even 10 words apart.

1.5.3 Variable n-grams

Not all word pairs are created equal. In an effort to reflect the fact that “black

hole” represents a single semantic entity, distinct from “black” and “hole” con-

sidered together, we preprocess the corpus using a statistical approach to join

frequently occurring n-grams, the same approach used in the word2vec work

[62].

This consists of four passes of joining commonly occurring bigrams in the

corpus, where two words are joined with an underscore if they pass a certain

threshold:
count(wi,w j) − δ

count(wi)count(w j)
≥ τ . (1.39)

Here δ ensures that the bigram has to occur a certain number of times. For

this work, we set δ = 40 and do four passes with decreasing thresholds τ =

[400, 300, 200, 100] in order to create relatively long n-grams.

To facilitate computation, we then threshold the vocabulary to consist of n-

grams that occur at least 30 times in the corpus, leaving us with a vocabulary of

133,419 ‘words’.

For instance, after this process quantum mechanics, black hole, and

power spectrum are all recognized as single ‘words’. Some of the longest n-
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grams correspond to pdf2txt.py renderings of common references:

• phys rev lett url http link aps org doi physrevlett

• royden real analysis 3rd ed upper saddle river prentice hall

• issn url http www sciencedirect com science article pii

or common phrases:

• there exist positive constants c1 c2

• authors declare no competing financial interests

• multiplicative contractive completely positive linear

• root mean square error rmse

The observed ‘word’ counts show an approximately Zipfian or power law

distribution, wherein the occurrence of a word is proportional to the inverse of

its rank.

P(w) ∝
1

count(w)
(1.40)

We plot the observed frequency distribution of the words in Figure 1.6 below.

1.5.4 Multiple Domains

The arχiv dataset contains more than a simple corpus of word usage. There

is a natural division of the corpus into independent articles (25,142 articles for

this corpus). Associated with each article is a set of metadata, consisting of the

categories the article is assigned, its authors, even its readers. This is in many

ways the central question for this portion of the thesis, namely, can we extend
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Figure 1.6: The observed counts as a function of rank for the words in the arχiv
corpus. The word counts show an approximately Zipfian distribu-
tion, imposed here in red.

the idea of vector based embeddings to additionally represent articles, authors,

readers, and categories with vectors living in a similar, or the same space as the

words themselves.

To be precise, each article on the arχiv has a single primary category to which

it has been assigned, and optionally, can be cross listed in other categories as

well. Each article naturally has a list of authors. Each article also has a sum-

mary, usually taken to be the abstract, which is separately available and shown

to potential readers before they download the pdf, which we could consider

separately.

We also had access to some anonymized access logs, not publicly available,

at the cookie or IP level. Every time someone views an article’s abstract page,

or downloads its pdf, it leaves a trace on the server, associated with a cookie,

which should persist across different sessions with the same browser for that

user (assuming they do not clear their cookies). The user’s IP address is also
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logged, which could potentially link different browsers on the same machine to

the same cookie or login, but IP addresses are often rather fleeting these days,

as many users’ ISPs will assign different IP addresses every time their router

reconnects.

1.5.5 Minor and Major Categories

For the corpus in question, there are 147 different categories represented, of

which only 143 appear as the primary category. Some categories are duplicates

of one another, such as math-ph (Physics: Mathematical Physics) and math.MP

(Mathematics: Mathematical Physics). These (minor) categories are at a fairly

fine level, and can be coarsened into a larger scale separation of the articles,

at the highest level into just 7 major categories: Physics, Mathematics, Com-

puter Science, Quantitative Biology, Quantitative Finance, and Statistics. The

occurrence of each of the primary minor and major categories is shown below

in Figure 1.7. Notice that there is a large discrepancy between the most popular

category: quant-ph: Quantum Physics with 1119 articles in this period, and

cs.OS: Operating Systems, with only 4. The same discrepancy holds even at

the major category level, where physics saw 13,645 articles, while quantitative

finance saw only 156. In Figure (1.7), we’ve given each category a color, where

the major categories were each assigned a hue, and then the minor categories

were given random variations on that hue. The physics categories are green,

math are blue, cs are red, stat are yellow, q-bio are orange, and q-fin are purple.

Later, we will use these colors in detailed visualizations, and in this way, Figure

1.7 will serve as a key to the color scheme.
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Figure 1.7: The observed category counts for the arχiv corpus. The 142 minor
primary categories are grouped into the 6 major categories. The
counts for each major and minor category are shown next to the
name. Notice that the x-scaling is not uniform across major cate-
gories in order to emphasize the differences in population for the
less populated major categories.

1.5.6 Authors

For the given 3 month corpus, there are 73,497 distinct authors listed across all

of the papers. In Figure 1.8, we’ve shown the distribution for the number of

papers associated with each author.

Due to discrepancies between the way author names appear across different
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Figure 1.8: The observed article counts for each author for the 3 month arχiv
corpus.

papers, each author is reduced to Last Name, Initial form. This helps prevent

a single author from appearing under different names, but can obviously cause

some ambiguity problems for common names. The most prolific author for this

window was “de Oliveira, H. M.”, with 48 papers, who it appears took the

time to upload most of his previous publications earlier this year. The second

most prolific author was “Zhang, Y.”, with 33 papers. This demonstrates the

downside of collapsing names in this way.

1.5.7 Readership

For readership data, we decided to look at the cookie level. We utilized all of

the cookies from the start of the year until the present day, for both the viewing

of abstract pages, as well as pdfs. We applied a cut, keeping only those cookies

associated with at least 20 accesses. This left 96,470 distinct cookies. The distri-

bution for the visits associated with each cookie is shown in Figure 1.9 below.

27



Figure 1.9: The observed number of accesses associated with each cookie after
applying a cut of at least 20 accesses.

Just as with the authorship, there is a very long tail in the observed access counts

for each cookie.

1.5.8 Pairwise Mutual Information of the Metadata

There is a fundamental question as to the utility of all of these various sources

of metadata information. In order to probe how much information is shared be-

tween these different sources, we computed the mutual information between all

pairs of the article ids, minor categorization, major categorization, authorship,

word usage, and readership. The results are shown below in Table 1.1.

For the smaller sets, the mutual information was estimated by extrapolating

the empirical estimates of the observed joint entropy distributions, as proposed

in [94]. The starred numbers reflect the simpler, empirical mutual information

estimated from the empirical joint entropy, without extrapolation, due to the

size of the full joint distribution.
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art minor major auth words readers
art 14.618 6.32(1) 1.669(9) 14.186(7) 2.563* 9.279*
minor 6.314(6) 1.652(9) 5.949(7) 0.618(6) 4.005(6)
major 1.665(5) 1.623(7) 0.168(5) 1.331(5)
auth 16.404(3) 2.213* 8.226*
words 10.3263(1) X
readers 15.6125(5)

Table 1.1: Table of observed mutual informations for the arχiv corpus. This
should give us some indication of what we can hope to learn from
each source of metadata in relation to the article identities. The
mutual informations were estimated by extrapolating values for the
joint entropies measured empirically from different subsamples of the
data, following the method proposed in [94]. The starred values are
empirical estimates, where the subsampling procedure was too costly.
Note that the values in this table should be symmetric across the di-
agonal. The value for the mutual information between words and
readers proved too expensive to compute explicitly.

Mutual information measures the amount of information knowing either

variable tells you about the other. In terms of the entropies of a pair of vari-

ables:

I(X,Y) = H(X) + H(Y) − H(X,Y) = H(X) − H(X|Y) = H(Y) − H(Y |A) , (1.41)

which can be represented schematically, as in Figure 1.10.

All told, we can see that there is complete overlap between the article iden-

tity and the categorizations. This is to be expected, as we suspect that knowing

which article we are dealing with is enough to uniquely determine which cate-

gory it is in. The mutual information between the article identity and authorship

is large, but not complete. This suggests that for instance, knowing authors does

not completely determine which article we are dealing with, because in fact,

some articles have exactly the same set of authors. Similarly, categorizations

and authorship have large, but not saturating mutual information.
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H(X|Y) I(X,Y) H(Y |X)

H(X) H(Y)

H(X,Y)

Figure 1.10: A graphical representation of the relationship between the mutual
information between two variables: I(X,Y), and the various en-
tropies and conditional entropies.

Perhaps most interesting is the mutual information between the word distri-

bution and the other quantities. The word distribution doesn’t have very large

overlap with any of the other sources of information. Given the complexity of

word usage, this might be expected. Notice however that the existing over-

laps can have a very large effect. The 2.6 bits of overlap with the article identity

means that conditional on a choice of article, the entropy in the conditional word

distribution drops significantly, from 10.3 bits to 7.7 bits. This corresponds to a

drop in the perplexity from 210.3 ∼ 1300 to 27.7 ∼ 210. If, instead of estimating

populations of equal usage, we assumed that the vocabulary followed a Zipf

distribution exactly, 10.3 bits corresponds to a vocabulary of ∼ 24 000 words,

while 7.7 bits corresponds to only 1 300 words, which corresponds roughly to

the length of an article. The mutual information between authors and words is

similar, which we could see as an extension of the observation that 75% of our

authors have only a single article.

The mutual information between the categorizations and word usage is

quite low. Naively, this might spell doom for our attempt to learn the categories
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based just on the word usage, but in reality, even very small mutual informa-

tion can allow for a very high degree of classification. For instance, imagine that

there was just a single word that occurred once per article, which only occurred

in a given category. This word would contribute negligibly to our mutual in-

formation, but would allow a perfectly accurate classification scheme. A better

way to find such telling words is to look at the pointwise mutual information or

PMI, defined as:

PMI(x, y) = log2
P(x, y)

P(x)P(y)
, (1.42)

in terms of which the mutual information is just the expected pointwise mutual

information over the joint distribution. Words that have large PMIs serve as a

strong indicator that a given word should appear in a given class. We’ve shown

the ten words with the largest PMI with respect to the major categories below

in Table 1.2, neglecting any word that is in the top 200 words in our vocabulary,

so as to avoid stop words.

physics temperature, spin, phase, stars, particle, region, phys rev lett, physics, electron, particles
math there exists, l2, rn, prove, suppose, remark, corollary, x0, implies, algebra

cs user, network, performance, node, information, based, users, nodes, proposed, graph
stat estimation, methods, estimator, prior, statistics, posterior, regression, variance, test, sample

q-bio cell, population, cells, species, gene, genes, protein, neurons, network, individuals
q-fin market, price, risk, financial, volatility, prices, portfolio, trading, st, finance

Table 1.2: Words with the largest PMI for each major category that are not
amongst the top 200 words.

The pointwise mutual information does a great job at picking out keywords

for each of our major categories. If an article discusses users and nodes on some

graph, it is likely a cs article, while the appearance of markets, price and risk is

a sure sign of a quantitative finance article. Math articles make extensive use of

L2 (l2), RN (rn), and x0 (x0).
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1.6 arχiv Word Vectors

word2vec and similar word vector embedding methods have become very

popular lately. This is largely attributable to the success they have demonstrated

across many different Natural Language Processing tasks, including the syllo-

gism tasks they first considered [62, 78, 53, 63], as well as more traditional tasks,

such as sentiment analysis [78] and machine translation [60]. Later, in chap-

ter 2 we will demonstrate their ability to power a state of the art segmentation

algorithm.

Most of these works have focussed on issues of encoding semantic and syn-

tactic properties of common English usage, reflected in the choice of datasets

used to train the methods. Most of the datasets included traditional sources of

written English, including dumps of Wikipedia articles, the Google book cor-

pus, or larger corpora created from crawling the web as a whole.

The first question was whether these methods would work in the context

of a technical corpus such as the arχiv . Scientific literature is distinct from

common written English, both in its use of specialized terms, and in its overall

style generally.

1.6.1 Methods

To investigate, we trained three different word vector models, in each case learn-

ing a 200 dimensional representation for each of the 133,419 ‘words’ in our vari-

able n-gram vocabulary that resulted after the preprocessing described above.
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word2vec skip-gram hierarchical softmax (hs) - Using the supplied word2vec

code 1, we trained an instance of the skip-gram hierarchical softmax

model, with a window size of 10, and the subsampling set to a thresh-

old of 10−5. This does a single pass over the corpus, with an scheduled

learning rate.

word2vec skip-gram negative sampling (ns) - The next model was the skip-

gram negative sampling method, with 5 negative samples generated for

each word, again a window of 10 and the same subsampling threshold.

GloVe (g) - Lastly, we trained an instance of GloVe , using the released code 2,

with the default window size of 15, and 25 iterations of Adagrad [21]

stochastic gradient descent.

1.6.2 Nearest Neighbors

After training the various word vector methods, we can get a sense of their

utility by observing nearest neighbor relationships. Similarity is measured by

the cosine similarity between the word vectors, a measure of the angle between

the two word vectors. To make better connection with the notion of distance,

this cosine similarity is turned into a distance by subtracting the cosine of the

angle between the vectors from 1:

dcos (v,w) = 1 −
v · w
|v||w|

, (1.43)

so that our resulting distance measure runs from 0 if the vectors are parallel, to

2 if they are anti-parallel.

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/
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For instance, we could ask, which words are closest to the word “blue”?

The results are shown in Table 1.3 below. With the exception of the tenth word

suggested by the GloVe method (‘indicated’), all of the nearest words are them-

selves colors.

blue
hs ns g

red 0.13 red 0.10 red 0.05
black 0.13 yellow 0.15 black 0.18
grey 0.15 cyan 0.15 green 0.22
orange 0.16 black 0.16 yellow 0.23
yellow 0.16 purple 0.16 orange 0.25
purple 0.17 grey 0.17 magenta 0.28
cyan 0.17 magenta 0.18 cyan 0.29
pink 0.20 light blue 0.19 red green 0.31
magenta 0.21 orange 0.19 purple 0.31
green 0.23 violet 0.19 indicated 0.32

Table 1.3: Nearest word vectors to “blue” and their resulting cosine distance for
the three different word vector methods. (hs) is word2vec skip-gram
hierarchical softmax, (ns) is word2vec skip-gram negative sampling,
and (g) is the GloVe method.

While the resulting cosine distances might not seem impressive, remember

that these word vectors are each 200 dimensional, so that if they were all dis-

tributed randomly, the expected cosine distance would be 1, while the standard

deviation of the cosine distance would be roughly 1/
√

D ∼ 0.07. More precisely,

the cosines will be distributed as:

P(cos θ) ∝
(
1 − cos2 θ

) D−3
2 d cos θ , (1.44)

so that our cosine distance, d = 1 − cos θ, will be distributed as:

P(d) ∝
(
1 − (1 − d)2

) D−3
2
. (1.45)

For 200 dimensional vectors, as we’ve trained here, this means we have a van-

ishing probability that the cosine distance is anything less than around 0.5. Be-

low in Figure 1.11, we’ve shown the probability distribution for the cosine dis-

tance of two random isotropic unit vectors in 200 dimensions, as well as the
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cumulative distribution. Notice that below 0.5, our cumulative distribution is

below machine precision for double precision floating point numbers.

Figure 1.11: The probability distribution for the cosine distance for two random
isotropic 200 dimensional vectors, on the left, along with the cumu-
lative probability distribution on the right.

Probing scientific terms is more interesting. Consider “electron”. In Table

1.4, we see that for all three methods, the word nearest to “electron” is “elec-

trons”, which should make sense. The presence of adjectives we might expect

to be used to describe electrons in articles, such as ‘photoexcited’ and ‘spin-

polarized’, is also of note. Words that frequently appear next to our target word

will be expected to point in similar directions. However, we also see the pres-

ence of similar nouns such as ‘ion’, ‘electron hole pairs’ or ‘hole’. In this sense,

the vector embedding has learned that ‘hole‘ and ‘electron‘, while they might

not necessarily appear near each other very often, might have very similar con-

texts usually. They are synonyms, in a sense, and our vector model learns that

they should point in a similar direction, not necessarily directly, but because

they are both forced to point in a direction similar to all of the words used to
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describe them.

electron
hs ns g

electrons 0.19 electrons 0.16 electrons 0.20
electron hole pairs 0.32 electronhole 0.24 hole 0.31
photoexcited 0.33 electron hole pairs 0.25 ion 0.32
excitation 0.33 charge carriers 0.28 proton 0.37
ion 0.33 hole 0.29 excitation 0.38
spin polarized 0.34 photoexcited 0.29 photon 0.38
spindependent 0.34 photo excited 0.29 energy 0.39
electronhole 0.34 ion 0.29 atom 0.39
electron hole 0.34 electron tunneling 0.29 electronic 0.40
energy 0.35 photo excitation 0.30 muon 0.40

Table 1.4: Nearest word vectors to “electron” and their resulting cosine distance
for the three different word vector methods.

We can see more evidence of this synonym type behavior by look-

ing at the nearest neighbors to ‘singular value decomposition svd’, be-

low in Table 1.5. Here we notice the presence of ‘eigen decomposition’,

‘choleksy decomposition’, ‘whitening’, ‘principal component analysis pca’,

‘truncated svd’, ‘schur complement’, ‘pseudo inverse’, ‘gi ica’ (for Gaussian In-

variant Independent Component Analysis [111]), and ‘tucker decomposition’ (a

form of tensor SVD [105]).

singular value decomposition svd
hs ns g

orthonormal columns 0.37 eigendecomposition 0.27 eigen decomposition 0.42
sparsifying basis 0.37 matrix 0.30 eigendecomposition 0.44
eigen decomposition 0.37 gi ica 0.31 svd 0.44
rank deficient 0.38 truncated svd 0.31 randomized sampling 0.47
sparsified 0.38 orthonormal columns 0.32 cholesky decomposition 0.48
tucker decomposition 0.40 lowrank 0.32 principal component analysis pca 0.48
right singular vectors 0.40 whitening 0.32 pseudo inverse 0.50
blockwise 0.40 sos boosting 0.33 schur complement 0.50
efficiently computed 0.40 block circulant 0.33 galerkin approximation 0.51
hard thresholding 0.41 cholesky decomposition 0.33 truncated svd 0.52

Table 1.5: Nearest word vectors to “singular value decomposition svd” and
their resulting cosine distance for the three different word vector
methods.
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In the previous two examples, the GloVemethod arguably has more of these

synonyms in its nearest neighbor list. This may be due to the fact that in the

GloVe method we simultaneously learn representations for both words and

contexts as vectors, and the final representations we take for a given word is

the sum of its word vector and context vector. As pointed out by Levy and

Goldberg [55], this has an effect on the similarity metric of adding cross terms:

w1 · w2 → (w1 + c1) · (w2 + c1) = w1 · w2 + c1 · c2 + w1 · c2 + c1 · w2 (1.46)

Amusingly, the word vector models seem to learn about naming habits in

different countries:

john dmitri wang stefano pierre
david 0.16 misha 0.27 zhou 0.08 roberto 0.21 jean 0.22
michael 0.17 nikshych 0.29 liu 0.08 alessandro 0.24 frederic 0.24
robert 0.17 kirill 0.30 chen 0.08 emanuele 0.25 alain 0.24
william 0.18 graeme 0.30 zhang 0.09 michele 0.25 yves 0.25
daniel 0.21 pavel 0.31 yang 0.10 giuseppe 0.26 christophe 0.25
chris 0.21 alexei 0.31 huang 0.10 nicola 0.26 olivier 0.26
eric 0.22 mikhail 0.31 zhao 0.12 paolo 0.26 sylvain 0.27
philip 0.22 ross street 0.31 zhu 0.12 francesco 0.27 claude 0.28
jonathan 0.22 mircea 0.31 feng 0.12 pietro 0.27 jean philippe 0.29
stephen 0.22 higson 0.31 luo 0.13 laura 0.27 stephane 0.29

Table 1.6: Nearest word vectors to various first names, using the hs method.

This is presumably due the names that appear in references at the ends of

articles, as well as the lists of authors at their start. Names like John and David

can be expected both to appear near one another, due to the tendency of authors

with English names to write articles with other authors with English names,

and have a degree of replaceability, due to their proximity to certain words like

‘smith’.
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1.6.3 Analogies

Besides looking at nearest neighbors, we can attempt to find syllogisms, as was

done in the original word2vec paper [59]. Here, we rely on the ability of the

word vector methods to encode more than nearest neighbor relationships. For

instance, we know that force is to torque as momentum is to angular momen-

tum, the latter pair being the angular version of the former. If the learned word

vectors have learned a proper Euclidean embedding of the words and their re-

lationships, we might expect that the vector for torque lies at a similar displace-

ment from the vector for force as the vector for angular momentum does in

relation to momentum.

We can probe this analogy by probing for words nearby:

vmomentum + (vtorque − vforce) . (1.47)

In direct analogy to the way we sought out nearest neighbors, we could look for

the vector with the smallest cosine distance to the linear combination of word

vectors describing the analogy.

Alternatively, as suggested in [56], instead of doing a linear probe, we could

do a multiplicative probe, seeking the word that maximizes:

arg max
w

cosine(vmomentum,w) × cosine(vtorque,w)
cosine(vforce,w) + ε

, (1.48)

which they named the 3CosMul method. In their experiments, this gave better

analogy results.

Finally, if our unit vectors were all normalized, the cosine probe would be

equivalent to:

arg max
w

∣∣∣(w − vmomentum) + (vtorque − vforce)
∣∣∣2 . (1.49)

38



In the Arora paper [3], it is mentioned that this Euclidean probe performs well

even if the word vectors are not normalized first.

Below, in Table 1.7, we show all three query methods applied to all three

word vector models for the analogy in question. For the corpus, all nine of

these combinations find the correct answer, aside from the possible presence of

the probe words themselves and their plurals. The presence of the probe words

is natural. Since we are in a high dimensional space, the sum of two words will

tend to have a high cosine similarity with either of the words in the sum, as an

extension of the likelihood for any two words to be nearly orthogonal.

1.6.4 Projections

Besides a microscopic view of the word vector embeddings, we can attempt

to get a global view, by visualizing all of the word vectors, projected down to

two dimensions. We could train our word vector methods to learn a two di-

mensional representation directly, but previous work [62, 18, 78] has generally

shown that larger dimensional representations with dimensions on the order of

hundreds perform much better. The problem then becomes one of data visual-

ization: how can we represent a collection of high dimensional vectors faithfully

in low dimensions?

Instead of using a linear method such as PCA, or even traditional nonlinear

methods [52], here we will represent our word vectors using t-SNE [110], and

in particular, an implementation of Barnes-Hut-t-SNE [109], a fast algorithm for

computing very nice low dimensional embeddings of high dimensional data.
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hs ns g
cosine(w, force − torque + momentum)

momentum 0.28 momentum 0.26 momentum 0.32
torque 0.30 torque 0.33 angular momentum 0.42
torques 0.43 angular momentum 0.37 torque 0.43
angular momentum 0.45 torques 0.41 orbital angular momentum 0.48
angular velocity 0.49 helicity 0.43 total angular momentum 0.49
helicity 0.50 angular velocity 0.44 momenta 0.50
transverse 0.51 chirality 0.45 helicity 0.53
charge 0.52 momenta 0.46 transverse momentum 0.54
spin 0.52 spin 0.47 spin 0.56
azimuthal 0.52 antidamping like 0.48 light cone 0.57
berry curvature 0.54 energymomentum 0.48 chirality 0.58

3CosMul
torque 0.00 momentum 2.89 torque 0.00
momentum 0.00 torque 3.29 momentum 0.00
momenta 0.31 angular momentum 3.38 momenta 0.28
angular momentum 0.34 energymomentum 3.65 angular momentum 0.31
torques 0.35 antidamping like 3.65 transverse momentum 0.40
helicity 0.39 torques 3.65 total angular momentum 0.42
momentum conservation 0.40 angular velocity 3.68 helicity 0.43
momentum transfer 0.41 helicity 3.68 spin 0.43
total angular momentum 0.41 spin 3.68 orbital angular momentum 0.44
charge 0.43 momenta 3.68 energy 0.44
transverse 0.44 lab frame 3.70 light cone 0.47

|| (force - torque) + (momentum -w) ||2

momentum 2.47 momentum 2.89 momentum 5.85
torque 2.60 torque 3.29 angular momentum 6.61
angular momentum 3.02 angular momentum 3.38 torque 6.69
torques 3.05 energymomentum 3.65 total angular momentum 6.86
charge 3.12 antidamping like 3.65 orbital angular momentum 6.88
transverse 3.13 torques 3.65 dissipating 7.16
spin 3.15 angular velocity 3.68 momenta 7.17
quantization axis 3.17 helicity 3.68 imparted 7.21
antidamping like 3.18 spin 3.68 helicity 7.31
angular velocity 3.18 momenta 3.68 lepton pair 7.33
time reversal breaking 3.19 lab frame 3.70 komar 7.34

Table 1.7: The result of applying three different probe methods to the three dif-
ferent word vector representations trained on the arχiv, seeking to
find the answer to the analogy: force:torque::momentum:?. Notice
that aside from the presence of the probe words themselves and their
plurals, all nine instances find the correct answer: angular momen-
tum.
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t-SNE attempts to learn a two dimensional vector for each point (yi), and de-

fines a symmetric probability distribution for the neighborship of those points:

qi j =

(
1 + ||yi + y j||

2
)−1∑

k,l
(
1 + ||yk + yl||

2)−1 , (1.50)

given by a Student’s t-distribution, such that this low dimensional stochastic

map has a minimal Kullback-Liebler divergence with the corresponding high-

dimensional symmetric probability distribution for neighborship:

C = KL(P||Q) =
∑

i j

pi j log
pi j

qi j
(1.51)

where we take the corresponding high-dimensional symmetric distribution to

be a symmetrized version of a simple Gaussian model:

pi j =
p j|i + pi| j

2n
(1.52)

p j|i =
exp

(
−||xi − x j||

2/2σ2
i

)
∑

k,i exp
(
−||xk − xi||

2/2σ2
i

) (1.53)

where yi is the high dimensional vector in question. The variances are chosen so

as to try to ensure a constant perplexity, chosen by the user (perplexity ∼ 2H(p j|i)).

While seemingly complicated, this cost has a very nice gradient [110]:

∂C
∂yi

= 4
∑

j

(
pi j − qi j

) yi − y j

1 + ||yi − y j||
2 (1.54)

This qualitatively has the form of a collection of nonlinear springs, pulling and

pushing each of our two dimensional points. The nonlinearity ensures that very

far away points tend to have reduced influence on the position of a particular

point, and the effective spring constants (pi j − qi j) mark the disagreement be-

tween our notion of distance in the low dimensional embedding versus the high

dimensional data. t-SNE has shown the capability of creating very powerful vi-

sualizations of real world datasets, often preserving a remarkable level of both

local and global structure [110].
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Below, in Figures 1.12, 1.13, and 1.14, we show the t-SNE embeddings found

for the word vectors trained by the hierarchical softmax, negative sampling,

and GloVe methods respectfully, with a perplexity set to 40. This means that

the high dimensional distances roughly consider the distances to the 40 nearest

neighbors. In order to better reflect the cosine distances in the high dimensional

vectors, here we first normalized all of the vectors, since for normalized vectors,

the euclidean distance is proportional to the cosine distance:

||v̂ − ŵ||2 = 2 (1 − v̂ · ŵ) (1.55)

In order to help highlight the structure inherent in the embedding, we col-

ored each word according to the category with which it shares the largest point-

wise mutual information (PMI). The color scheme is the same as used earlier

in Figure 1.7. Notice that even though the word vector embedding methods

have no knowledge of the categorizations, in fact, they have no knowledge of

any of the metadata, including the article associations, the learned word vec-

tors clearly respect the notion of categories. Clearly visible are regions where

physics (green), math (blue), cs (red), stat (yellow), q-bio (orange), and q-fin

(purple) words collect. Looking closer, you can see that even within the large

regions, the words tend to arrange themselves into regions with homogeneous

shades of each color, corresponding to words with the greatest pointwise mu-

tual information consisting of a single minor category.

Even parts of the embedding that at first glance appear to be a muddled col-

lection of different colored dots, upon closer inspection, reveal their own struc-

tured layout. Consider the separated mass of points in the northwest extreme

of the hs embedding. At first it appears to be a black smudge, but if you zoom

in, you can see that that smudge itself shows a colored gradient, with blue dots
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Figure 1.12: t-SNE projection of word2vec skip-gram hierarchical softmax
word vectors, trained on the arχiv dataset. The minor category
each word has the largest pointwise mutual information with de-
termines the color used to represent the word. The color scheme is
the same as in Figure 1.7.
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Figure 1.13: t-SNE projection of word2vec skip-gram negative sampling word
vectors.

concentrated towards the right, a red stripe running through the center, and a

mostly green left top. In fact, this island is made up of French words, themselves

separating nicely into distinct categories and well separated from the bulk of the

English words.

Perhaps even more remarkable is the remarkable similarity between the dif-

ferent projections. The three projections are from three distinct objectives. Each
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Figure 1.14: t-SNE projection of GloVe word vectors.

projection is an instance of a distinct stochastic embedding, with its own ran-

dom initialization. Granted, we had to reflect the resulting embeddings to get

them to agree so remarkably. The projection is unique up to an overall trans-

lation or reflection into the 2D plane. In particular, the hs and ns embeddings

could easily be considered siblings. The overall structure is basically the same.

Looking closer, you can see the presence of the same sorts of substructures in

both as well. The left half is all (green) physics articles, the bottom consists of
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(blue) math, and the (red) cs sit north of the math. The (yellow) stat articles

are intermediate between cs and math. Our isolated smudge of French terms

has moved into the southwest corner. For substructures with strong associa-

tions with one another but weaker association with the rest of the collection, we

might expect this kind of larger orientational change. But the overall similarity

ought to serve as a hint that the structure we observe in these embeddings is

real, and present ultimately in the word cooccurrence statistics itself.

Compared with the word2vec embeddings, the GloVe embedding leaves

much to be desired. While there is clearly an overall rough segmentation into

major categories present, and some hint of minor category segmentation, the

embedding has a more random, muddled appearance to it. This may be a sign

that the word vectors themselves are not as reasonable, or could be an artifact of

the fact that the GloVe vectors are the sum of both the word and context vectors

learned during the training process. Perhaps the muddled quality is due to this

struggle to try to project down what is essentially the sum of two distinct high

dimensional representations.

1.7 Vector Representations of Articles

Given that we have effective vector representations for the words appearing

on the arχiv, the real question is whether we can build similar vector represen-

tations at the article, author, category and/or reader level. Those vector rep-

resentations could then be used to power interesting applications. Our main

contribution has been to try various methods on the arχiv and compare their

results.
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1.7.1 Aggregation Techniques

The first strategy for building representations of articles would be to build them

directly out of the representations of words we trained above. These aggrega-

tion techniques are cheap computationally, and efficient even as new articles

are submitted, as word usage and vocabulary are more stable over time. We

still have various choices for how exactly to aggregate the words.

Bag of Words

In classic information retrieval, a document is considered as a bag of words, that

is, each article is represented by the number of times each word is used in that

article. This is intrinsically the representation used for Naive Bayes classifica-

tion, which does a remarkable job at categorizing articles into their respective

categories. At present, Naive Bayes is used by the system classifier to help aid

the arχiv editors in deciding whether articles need to be recategorized when

they are submitted.

Representing articles as the bag of their words naturally destroys any infor-

mation encoded by the word order. But, their utility seems to signify the fact

that a great deal of information is encoded in the unigram counts in a docu-

ment. Another potential downside is the large dimensionality of the represen-

tation. Each article is represented by a vector that is as large as the vocabulary,

albeit sparse. This could potentially destroy the performance of bag-of-word

based algorithms, but the inherent sparsity, if utilized, means that the methods

can be very competitive computationally.

Thought of in terms of a large data matrix, this amounts to representing our
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corpus as the matrix Dai, where each row (a) represents a particular article and

each column (i) represents a particular word. The matrix is populated with the

word counts inside each article.

DBOW
ai = countai(wi) (1.56)

Each article is therefore represented by a sparse V-dimensional vector Da, read

off as the rows of this matrix.

Random Projection

Since the bag of words representation is inherently sparse, it suggests that us-

ing the full dimensionality of the representation is wasteful. In fact, quite gen-

erally, it is known that high dimensional data can often be compressed down

to a lower dimension without losing much fidelity. This is powered by the

Johnson-Lindenstraus lemma [43], which states that for a finite collection of points

in high dimensions, for any choice of tolerance, there exists a random projection

of smaller dimension that preserves all pairwise distances. The lemma often

gives a very high dimension, in practice it is observed that much smaller di-

mensional random projections can preserve a great deal of the structure in large

sparse datasets. This amounts to multiplying our word count matrix by a ran-

dom matrix, usually taken to be populated by independent Gaussian entries.

DRP
ak =

∑
j

Da jΩ jk (1.57)

This turns the very large dimensional sparse representation of each article into

a dense, moderate dimensional representation.
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Weighted Averaging

The previous two methods have not yet utilized our nice representations at the

word level. If those word representations are meaningful, we ought to be able

to use them to power our formation of article representations as vectors. In

the crudest form, we could represent an article as the sum of all of the vectors

representing each of the words in the document.

If we treat all of our word vectors as the matrix: Wwk, this amounts to

DAV
ak =

∑
w

DawWwk (1.58)

You’ll notice that this takes the same form as our random projection, although

this time we hope to benefit from the structure of the word vectors. Two similar

words, such as event horizon or black hole horizon will correspond to

similar vectors, and so will contribute similarly to this sum.

We could be concerned however that the signal from the word vectors as to

the topic of the article might get washed out from this averaging procedure, be-

cause summing many vectors might destroy the information contained in their

directions. In fact we often assume that summing many vectors all distributed

more or less isotropically in space cancels out, a property intrinsic in the path

integral formulation of quantum mechanics for instance.

There are two things that save us here. The first is that the words in a given

article should not themselves be completely random. If the directions in the

vector space of words encode some kind of meaningful semantic identities, and

an article is in some way an organized collection of words with some central

theme or topic, it is precisely the surviving components of this sum that should

be the most meaningful for describing the content of the article. The second
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property that helps us here is that our word vector representations tend to have

appreciable dimensionality, on the order of a few hundred dimensions. In high

dimensions, the sum of two vectors can retain a large cosine similarity with both

of the vectors in the sum. This is clearest to see if you consider two vectors a, b

and consider a · (a + b) = a2 + ab cos θ and remember that in high dimensional

spaces, any two random vectors are nearly orthogonal (cos θ ∼ 0). (See Figure

1.11 and related discussion)

Alternatively, one can view the word vectors as defining a low rank approx-

imation to the true word-word metric. Consider a computation involving the

dot product of the bag of words representation of two articles, a and b. In our

bag of words representation, this dot product is simply aa · ab =
∑

i DBOW
ai DBOW

bi .

If we instead consider the dot product between two of our average-word article

vectors:

aa · ab =
∑

k

DAV
ak DAV

bk (1.59)

=
∑

k

∑
i

DBOW
ai Wik


∑

j

DBOW
b j W jk

 (1.60)

=
∑

i j

DBOW
ai

∑
k

WikW jk

 DBOW
b j (1.61)

=
∑

i j

DBOW
ai gi j DBOW

b j , (1.62)

we find that utilizing the average of the word vectors amounts to using a non-

trivial metric gi j =
∑

k WikW jk on the bag of words representations. This metric

being represented by a rank K symmetric decomposition, where K is the dimen-

sionality of our word vectors, just as we motivated in the introduction.

In either case, we could hope to generalize our vector average by weighting

the contribution of different words. In particular, we could adopt the common
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strategy in information retrieval of utilizing the tfidf weights, forming:

DWAV
ak =

∑
w

tfidfwWwk . (1.63)

The tfidf weight is the term frequency times the inverse document frequency,

typically taken on a log scale.

tfidfw = log (1 + count(w)) log
A

arts(w)
(1.64)

Here A is the total number of articles, and arts(w) tells us how many articles the

word appears in at least once.

By weighting the contribution of the word vectors in this way, we hope to

mitigate the effect of common English words, such as stop words that make up

the brunt of the actual article, but tell us little about the scientific topic under

discussion.

The addition of the tfidf weights is meant to tamper the contribution of fre-

quently occurring words. Taken to the extreme, we could simply allow each

word to contribute only once to our article vector, and represent the article just

as the sum of the word vectors for each word present. This is akin to the repre-

sentation used when one combines articles with Jaccard similarity. In particular:

DB
ak =

∑
w

δ(Daw > 0)Wwk . (1.65)

The δ here denotes a function that returns 1 if the argument is true, and zero

if it is false. The performance of this method in relation to the other two can

help us sort out how much the tfidf weighting benefits from its reduction in

the contribution of frequent words, versus its meaningful reflection of the word

usage.
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1.7.2 Trained Methods

Alternatively, we could learn article vectors as the solution to some form of

objective, just as we did for the word vectors themselves. There are three natural

architectures for learning article vectors, each corresponding to one of the three

techniques we considered for the word vectors.

DBOW Method

The first trained method for learning article vectors is the technique explored in

[50, 18], called the Distributed Bag of Words Model, or DBOW. In this method, an

article is represented by the vector that does the best job at predicting each of

the words in the article, according to a log linear model. That is, we maximize

the log likelihood of observing all of the words in an article:

L =
∑
w∈a

log P(w|a) (1.66)

with

P(w|a) =
exp(w · a)∑
i exp(wi · a)

=
1
Za

exp(w · a) . (1.67)

This is essentially the skip-gram model of word2vec but applied to the entire

article. Notice that this still does not utilize any of the word order information,

being based purely upon the total occurrence of each word in the article. A

schematic of this architecture is shown below in Figure 1.15.

In the second article [18], Dai et al. note that the performance of the method

was improved if they simultaneously learned both word and article represen-

tations. In practice, this means that they trained this method with hierarchical

softmax, and used their Huffman encoded tree to predict not only the words in
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Figure 1.15: The distributed bag of words (DBOW) model attempts to learn vector
representations of articles that do well to predict each of the words
in that article, through a classifier.

the article, but all of the neighboring words for each word in the article. They

argue that this acted as a regularizer to their model, and made the word repre-

sentations in the hierarchical tree more meaningful.

During training, we allow all of our vectors to adjust: the articles, words,

and inner nodes of our hierarchical softmax classifier. If we then wanted to learn

article vectors for new articles as they came in, this would require an inference

step where we freeze the word and inner node vectors, and instead just learn the

article representation. It is instructive to take a look at this inference objective.

The total log likelihood for observing all of the words in our article, given the

article vector is:

U j =
∑

i∈article

wi · a j − N j log Z j , (1.68)

where N j is the number of words in article j, and Z j is the partition function for
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our article

Z j =
∑

i

exp
(
wi · a j

)
. (1.69)

We can re-express this objective in terms of our article-word data matrix D,

and matrix of word vectors W:

U| =
∑

k

∑
i

DBOW
ji Wik

 ak − N j log Z j (1.70)

=
∑

k

DAV
jk ak − N j log Z j , (1.71)

and we notice that the DBOW method attempts to make each article vector lie

as close as possible to the average word vector for the article (DAV), but cru-

cially, with the additional goal of having the smallest partition function possi-

ble, meaning the article vector lies as perpendicular to the entire vocabulary as

possible. This objective has the form of an entropy S = U/T + log Z, where the

first term is our energy term, and the second is our free energy.

DM+ Method

Just as there were two natural architectures for word2vec , the CBOW and

skip-gram architectures, there are two natural architectures for attempting to

learn article representations. The first of the complementary CBOW style article

methods is the DM+ method, discussed in [50]. Here, as depicted in Figure 1.16,

we treat each article vector as though it were a piece of missing linear context

for each word. The article vector is summed along with the nearby words to

try to form the input to the word classifier. This treats the representation of the

article almost as if it were the pieces left unsaid at every position of the arti-

cle, which we could imagine would help aid in distinguishing the resolution of

some common synonyms. While mention of a spin 1/2 particle in a condensed
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matter article might almost always refer to ‘electrons‘, similar mention of spin

1/2 particles might more commonly be referred to as ‘leptons‘ in a high energy

article.

+,⊕

wi−1

wi−2

wi+1

wi+2

wia
p

Figure 1.16: The distributed memory model (DM) attempts to learn vector rep-
resentations of articles that behave as additional linear context for
each word observed in the corpus.

DM Method

The preceding methods took some advantage of word vectors, but failed to take

advantage of any of the ordering of the words in an article, except indirectly

through their effect on the word vectors themselves. We could hope to form

more informed article representations by making the vector representing an ar-

ticle take part in our actual model for the corpus itself, at the word level.

This constitutes the distributed memory model as implemented in [50]. Here

we use the same architecture depicted in Figure 1.16, but instead of summing

our article vector and local word vectors, we concatenate them, forming a larger
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dimensional input representation for the current word classifier.

This is, strictly speaking, a significantly more powerful method than the

DM+ method itself, as it is entirely within the domain of the method to learn

a concatenated representation that simply mimics the addition enforced in the

DM+ method. Whether the method actually achieves better performance, how-

ever, will come down to the practical question of whether we can effectively

learn the larger number of parameters with stochastic gradient descent acting

on a fixed sized corpus.

Multiple Domain Global Vectors (MDGloVe)

Our last method, and one that hasn’t yet appeared in literature, is to attempt to

generalize the global GloVe method to attempt to learn article representations.

A straightforward generalization would be to attempt to simultaneously learn

a low rank factorization not only of the word-word cooccurrence matrix Xi j, but

also learn a low rank factorization of the article-word cooccurrence matrix Ai j:

U = γX

∑
i j

fX(Xi j)
(
wi · c j + b(w)

i + b(c)
j − log Xi j

)2
+γA

∑
a j

fA(Ai j)
(
ai · w j + b(a)

i + b(w′)
j − log Aa j

)2

(1.72)

Here wi are the vectors representing words, ci are the vectors representing con-

text words, and ai are the vectors representing articles. Xi j is the matrix of word-

word cooccurrence counts, while Aa j is the matrix of article-word cooccurrence

counts. The word vectors (wi) appear in both matrix factorization objectives,

which helps ensure that all of the learned vectors will live in the same space.

Each vector gets its own bias, including two independent biases for the word
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vectors in each objective. Each objective is weighted, where

f (x) =


(

x
x0

)α
x < x0

1 x > x0

, (1.73)

while in principle, we could imagine different choices for α and x0 for each

weighted factorization problem. Finally, each part in the objective could have an

overall weight γX, γA, which could allow us to tune the objective towards better

optima for one or the other of the objectives.

In practice, we found that using equally weighted objectives for both the

article-word and word-context factorization problems, while it yielded nice

word and context representations, did not offer very useful article vector repre-

sentations. In the results we report below, we weighted the word-context fac-

torization by a factor of 1/100 to help mitigate this problem as it seemed to

give intermediate results between either extreme, but we admit that we did not

investigate the settings for this hyperparameter exhaustively.

1.8 Evaluation

We have proposed many different methods for formulating article vectors. In

order to compare these vectors, we’ll need some evaluation procedures. We

seek methods that will enable us to determine how useful the article vectors are

at capturing interesting relationships between the articles.
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1.8.1 Triplet Tasks

A simple method for evaluating the utility of the article vectors is to use them to

answer a series of triplet tasks. Each task will be defined by a set of three article

ids, (A, B,C). The task will compute whether B is more similar to A than C is, by

evaluating:
aA · aB

|aA||aB|
<

aA · aC

|aA||aC |
. (1.74)

That is, computing the cosine similarity of A and B, and comparing that to the

cosine similarity of A and C. We will create a series of these triplets, where the

triplets are constructed so that on the whole, the B choices ought to be closer to A

than the C choices are. Usually this will mean that we randomly select an article

A, choose B according to some similarity we can compute from the metadata in

the dataset and choose C to be a random article subject to some constraints.

For this work, each of our triplet tasks will consist of 20,000 triplets, each

attempting to represent some special kind of relationship in the data. Some

will try to capture category type relationships, both at the minor category and

major category level, some will try to capture authorship information, some

word usage, and some readership information.

The first set of triplets try to probe category type relationships between ar-

ticles. A and B should be more like one another than C because they share a

category label at some level, while C is chosen to be distinct at the category

level from A.

catminmaj (C[]) - B shares at least one minor category with A. C shares no

major category with A.
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catminmin (C[[) - B shares at least one minor category with A, C shares no

minor category with A.

catmajmaj (C]]) - B shares at least one major category with A, C shares no major

category with A.

C[[ ought to be the simplest of these tasks, because it should have the tightest

relationship between A and B, while the most dissimilar relationship between

A and C. The other triplets are to try to sort out any subtleties in the article

representation in terms of the minor/major category labels.

Next we create a triplets that try to assess authorship:

auth (A) - B shares at least one author with A. C is random.

authcat (A\) - B shares at least one author with A. C shares no authors in com-

mon, and comes from the same minor category as A.

Here A might be too easy, because it conflates authorship with categorization,

given that most authors only contribute to a small set of minor categories. The

A\ task, restricting C to be from the same minor category as A ought to allow

us to assess how sensitive the article representations are to the identities of the

authors writing the article. This could offer a test as to whether the article rep-

resentations are too sensitive to the stop word usage, because we suspect that to

vary strongly from one author to the next, but carry little categorical content.

We also probe our readership data:

reader (R) - B is chosen to be the most similar article in terms of readership as

measured by the Jaccard similarity. C is random.
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readercat (R\) - B is the same as above, while C must be from the same minor

category as A.

The Jaccard similarity measures how similar the readership sets are:

J(A, B) =
|RA ∩ RB|

|RA ∪ RB
(1.75)

For two articles, (A, B) the Jaccard similarity is given by the size of the intersec-

tion of their readership sets, divided by the size of their union. This similarity

measures runs from 0 for completely disjoint sets, to 1 for identical sets.

Here, similar to the authorship task, our \ variant R\, is there to try to protect

against the strong expected correlation between readership and categorization.

Finally, we design some triplets based on word usage:

words (W) - B is chosen to be the most similar article in terms of word usage, as

measured by the Jaccard similarity. C is random.

wordscat (W\) - C is restricted to be from the same minor category as A.

Using the Jaccard similarity here removes any influence of the frequency of

occurrence of words, instead focussing just on presence of word usage alone.

This is a common strategy used in Information Retrieval [83], and could help us

probe the scientific content the article, irrespective of length.

1.8.2 Classification Accuracy

Another natural test for the utility of the article vectors is to use them to power

a classification algorithm. In this work, we’ll use the article vectors for logistic
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regression, trained on 60% of the data and tested on the remaining 40%. The

dataset under consideration here is relatively small, and some of the minor cat-

egories have low counts, so we expect the minor classification task to be quite

difficult. On the other hand, the major classification task ought to be easy. Our

intuition is that trying to tell the difference between a math and biology paper

ought to be straightforward.

1.8.3 Euclidean Relationships

Just as we explored the word vectors by investigating their linear relationships,

both in terms of nearest neighbors and in terms of syllogisms, we can attempt to

do the same thing with the article vectors and see if we get meaningful results.

This is not a quantitative task, but might give us some intuition about how the

article vectors are performing.

1.8.4 Visualization

Lastly, we can hope to get a global picture of how the article vectors are dis-

tributed amongst the articles by trying to visualize them in low dimensions,

utilizing a t-SNE projection, as we did for the word vectors.

1.9 Results

Here we report the results obtained on the arχiv corpus, whose details are de-

scribed in section 1.5.
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1.9.1 Description of Models

To allow for a nice comparison between the different methods, we created 14 dif-

ferent models of article vectors for each article in the corpus. As a benchmark,

we will use the raw bag of words (bow) representation, as well as two ran-

dom projections (rand, randtfidf). We will test various word projection meth-

ods (wp *), as well as the trained methods discussed. To investigate the effect of

dimensionality, all of the trained methods will be run both in 200 dimensions,

to match the word projection methods, as well as 20 dimensions (* 20). This is a

crude probe of a hyperparameter that could itself be optimized.

bow - The bag of words model. Here each article is represented by a large

integer vector that counts how often each word appears in the article. The

dimensionality of the representation is the size of the vocabulary, in this

case 133 419, albeit sparse. Details in Section 1.7.1

rand, randtfidf - A random projection of the bag of words down to 200 dimen-

sions, both using the raw word counts and tfidf weighted counts. Details

in Section 1.7.1. This is equivalent to the word vector averaging methods

to follow, but with random word vectors.

wp hs, wp b hs, wp tfidf hs - Weighted averages of the word vectors obtained

from the hierarchical softmax word2vec method of Section 1.3.3, using

the raw word counts (wp hs), a binarization of the word counts (wp b hs),

and tfidf weighted combination of the word counts (wp tfidf hs) de-

scribed in Section 1.7.1.

wp ns, wp b ns, wp tfidf ns - Same as above but based on the word vectors

learned using negative sampling word2vec (Section 1.3.4).
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wp g, wp b g, wp tfidf g - Same as above but based on word vectors learned

with GloVe (Section 1.4)

dm, dm 20 - The concatenated distributed memory model (Section 1.7.2), in

both 200 dimensions, and 20 dimensions. To run the dm method, we mod-

ified the word2vec code to implement the method as described in [50],

with a window of size 5, 25 iterations over the corpus, and a subsampling

threshold of 10−5.

dm+, dm+ 20 - The additive distributed memory model (Section 1.7.2). Again,

this was trained by modifying the word2vec code to implement the

method as described in [50], with the same settings as the dm method,

(200, 20) dimensional vectors, a window of size 5, 25 iterations over the

corpus, and a subsampling threshold of 10−5.

dbow, dbow 20 - The distributed bag of words model (Section 1.7.2), using

both 200 and 20 dimensional article / word vectors. To train the method,

we modified the word2vec code to implement the method described in

[18], again with a window of size 5, 25 iterations over the corpus, and a

subsampling threshold of 10−5.

ga, ga 20 - The extended global vector method of Section 1.7.2, in both 200 and

20 dimensions. Here we modified the existing GloVe code to simultane-

ously learn article, word, and context representations. The objective was

minimized using ADAM [46], with 50 passes. The cooccurrence statistics

were collected with the GloVe , cooccur utility, as well as a modified util-

ity to collect the article-word cooccurrences, both with the default window

of size 15. To help push the objective towards learning useful article rep-

resentations, the word-context decomposition was weighted to contribute

0.01 as much to the total objective. The scaling parameter for the weight-
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ing function: α was set to the default 0.75 for both decompositions, but

the x0 threshold was set to 5, 100 respectfully for the article-word, and

word-context decompositions.

1.9.2 Triplet Tasks

We wish to compare each of our methods’ performance on the triplets defined

in Section 1.8.1. But in order to compare, we need some assurance that the num-

bers can be compared. To investigate the error in these triplet measurements,

in Table 1.8, we created 5 independent instances of the C[] triplets, each of size

20 000. In the table are shown the resulting scores and ranks across each of the

methods. The scores are reported out of 1000, similar to a batting average. No-

tice in the last column, the standard deviation in the scores across instances is

usually only a few parts per thousand. More important however is how reliable

the difference in scores are across models. With subscripts, we’ve denoted the

rank for each method for each of the triplet sets. Notice that the top performing

models are consistent across the five instances, but that we observe a single rank

change and tie appearance in two of the instances, highlighted in red. Across

all other instances, those methods that tie differ by at most 4 points in the last

reported digit across all instances.

While not comprehensive, this motivates our reporting of the triplet accura-

cies to the third digit, and suggests the validity of using these scores to compare

across models up to a few points in the third digit.

Below in Table 1.9, we report the accuracy each of the methods achieved on

the triplets defined in 1.8.1. The best results for each triplet set are marked in
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method (C[])i σ

bow 73217 73217 72617 72517 72717 2
rand 72018 72018 71118 71318 71218 3

rand tfidf 65020 65020 64320 64520 64820 3
wp hs 91211 91211 90712 91410 90911 2
wp ns 91310 91310 90910 91410 91110 2
wp g 87115 87115 86615 86915 86815 2

wp b hs 9476 9476 9446 9476 9466 1
wp b ns 9485 9485 9455 9485 9475 2
wp b g 9348 9348 9308 9358 9318 2

wp tfidf hs 9651 9651 9631 9641 9641 1
wp tfidf ns 9632 9632 9612 9632 9612 1
wp tfidf g 9387 9387 9357 9387 9377 2

dm 90912 90912 90910 91212 90812 1
dm20 9319 9319 9279 9339 9289 2
dm+ 88914 88914 89114 89314 88914 2

dm+20 9583 9583 9553 9583 9563 1
dbow 89813 89813 89813 90113 89613 2

dbow20 9564 9564 9534 9554 9534 1
ga 65619 65619 65019 66119 64919 4

ga20 81816 81816 81516 82416 82316 3

Table 1.8: Assessing the error in the triplet tasks by computing performance
across five independent instances of the C[] triplet test. The stan-
dard deviations of the scores for each model is just a few parts per
thousand. Subscripts denote the rank each method achieved in that
set. Notice that the only change in rank we observe is the appearence
of some ties (highlighted in red), and a single change. In all those
instances, the models that could potentially switch rank differ by at
most 4 in their last reported digit across all instances.

red, where we have also marked any results within 3 of the best result, as that

appears to be the level at which these triplets can be compared. In bold, we’ve

marked the “best in class” result for the model that achieved the best results

amongst those of the same type, distinguishing between the average word vec-

tor methods and more sophisticated trained methods.

Notice first the overall performance on the triplets themselves, across mod-

els. As we might have expected, the C[] performance is better than the C[[,
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category author reader words
C[] C[[ C]] A A\ R R\ W W\

bow 732 654 655 793 704 726 617 867 801
rand 720 646 641 782 696 714 613 852 789

rand tfidf 650 621 546 842 779 780 694 937 901
wp hs 912 856 776 910 720 916 702 979 900
wp ns 913 858 779 909 721 916 701 978 898
wp g 871 803 754 886 708 865 667 953 863

wp b hs 947 896 811 927 749 950 739 995 946
wp b ns 948 896 811 927 748 950 739 995 946
wp b g 934 870 804 924 753 935 729 995 955

wp tfidf hs 965 921 834 937 751 962 754 995 942
wp tfidf ns 963 916 823 934 751 960 750 994 944
wp tfidf g 938 883 793 925 751 944 741 995 957

dm 909 873 662 927 768 948 768 989 945
dm 20 931 893 680 922 712 941 724 981 892

dm+ 889 858 666 935 799 945 780 989 954
dm+ 20 958 925 729 935 740 956 750 986 910

dbow 898 867 665 943 811 951 789 992 962
dbow 20 956 917 737 931 729 956 741 986 911

ga 656 623 571 772 693 734 631 843 792
ga 20 818 764 688 869 696 858 664 949 856

Table 1.9: Table of triplet performance across models. The triplets are described
in detail in section 1.8.1. There are category based triplets (C), author
based (A), reader based (R), and word based (W). Shown is the perfor-
mance, measured as the percentage of the triplets discerned correctly,
reported as a number out of 1000. Higher is better and a random
method would achieve 500. The best results (or those too close to
distinguish) are shown in red. The best in class results are shown in
bold. wp tfidf hs and dbow show the best behavior between them-
selves across all triplets.

which is better than the C]]. This agrees with our intuition that minor cate-

gories have a better sense of similarity than major categories. The performances

observed are quite encouraging. The best observed scores across all models for

those sets are (965, 922, 836). None of these methods had access to categoriza-

tion information, either directly or indirectly, but they still manage to form vec-

tor representations of articles that respect those category labels. This suggests
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that the article representations ought to be useful for powering a classification

algorithm, which we will explore in the next section.

The average word vector methods have a clear advantage over the trained

methods on the categorization triplets. In many ways this is surprising, but

as we explored in Section 1.6.4, the word vectors themselves, in particular the

word2vec vectors show a remarkable respect to categorization. Also of note

is the generally better performance of the lower, 20 dimensional representation

in comparison to its 200 dimensional brethren. Without fail, in each instance

the lower dimensional representation showed better performance on the cate-

gorization triplets.

The fact that the A,R and W tasks have such high performance themselves,

highlights the fact that authorship, readership and word usages are highly cor-

related with categorization. We should expect those to be better on average, as

they tend to give us additional information over the category level information.

Looking only at the ‘natural’ sets, (A\,R\,W\), we observe the best performing

scores of (811, 789, 962), suggesting that the word usage is the most important

characteristic determining these article representations. This is unsurprising,

given that they are all more or less directly computed in terms of the word us-

age. Still the A\ performance is impressive.

As a reminder, the task basically amounts to being presented with a reference

article A, and asked to tell which is a closer match, B or C, where B is chosen at

random from the set of articles that shares at least one author with A and C is a

random article from the same minor category as A. For the dbow method, 81%

of the time, the article with the closer representation was the one that shared

at least one coauthor. Even more surprising is the R\ result. Here 79% of the
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time, the dbow article vector that is closer to the target had a strong readership

Jaccard similarity, even though the third article was in the same minor category

as the target. This suggests the learned article representations seem to capture

at least some kind of representation of the content of an article, beyond just its

categorization. At least some part of the representation reflects what people like

to read together.

Arguably, the natural author, reader and word sets could be said to most di-

rectly correspond to the type of problem a good recommendation system would

have to solve. Most readers are interested in reading about a particular field or a

small set of fields in science. A field such as topological insulators is much more

fine-grained than even the minor categorization affords. Topological insulator

articles might appear in cond-mat.mes-hall (Mesoscale and Nanoscale Physics),

cond-mat.mtrl-science (Materials Science), cond-mat.str-el (Strongly Correlated

Electrons) or cond-mat.supr-con (Superconductivity) for instance, while none of

those categories will be composed entirely of topological insulator papers. Con-

sider an instance of the A\ triplet task where we happen to choose a topological

insulator paper as our candidate A which happens to be in the cond-mat.mes-

hall category. Which is more likely to also be a topological insulator paper:

candidate B who shares at least one author, or candidate C, a random article

drawn from cond-mat.mes-hall? Given that authors tend to focus their energies

and papers towards a single, or small set of scientific subfields, we argue that

B is more likely to also be a topological insulator paper, even if it is in a differ-

ent category. A similar argument can be made for the R\ and W\ triplet tasks,

since readers similarly tend to focus their energies on a single subfield, and each

subfield tends to develop its own specialized vocabulary.
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In light of this, the fact that the dbow method uniformly, and quite substan-

tially leads the pack on all three of these triplet tasks, suggests that the resulting

article vectors deserve greater scrutiny.

Why then does the wp tfidf hs method lead on the R and W triplet tasks? As

argued above, these tasks conflate the notion of (readership, word usage) with

categorization. Since wp tfidf hs does so well on the categorization triplets, its

performance on R and W might be a byproduct of this performance.

In contrast to the performance on the categorization triplets, for the dm,

dm+, and dbow methods the 200 dimensional representation always performs

better than the 20 dimensional representation on the A\,R\ and W\ sets.

Notice that the random projection methods (rand, rand tfidf) perform very

competitively with the full dimensional bag of words (bow) representation,

even though it is only 200 dimensions itself. This illustrates the power of ran-

dom embeddings generally, that we can retain a great deal of performance even

with relatively mild dimensional representations. Perhaps more surprising is

that the tfidf weighted random projection actually outperforms the bow method

on the authorship, readership and word usage based triplets. This illustrates the

power of tfidf weights generally, and explains why they are so commonplace in

document retrieval.

As we may have expected, using trained word vectors for our projection,

rather than a random projection, noticeably improves performance across the

board. Here too, using tfidf weights instead of raw word counts also noticeably

improves performance. Comparing across the different word vector methods,

the word2vec hierarchical softmax approach shows the strongest performance
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on the category based triplets, while the GloVe word vectors do better on the

word triplets. The performance of wp tfidf ns tends to track the performance

of wp tfidf hs, but lags a few points behind. The binary weighted averages

(wp b hs, wp b ns, wp b g) in general fall intermediate between the raw word

sums and the tfidf weights, suggesting that mitigating the effect of common

words is important to improve performance, but additional performance gains

result from maintaining a scalar representation of word usage.

The GloVe word vectors do not appear to be as useful as the word2vec

vectors generally. In [78], the GloVe vectors performed better across the board

on word analogy tasks, word similarity, and named entity recognition tasks,

but here, the resulting word vectors don’t seem to combine well to form useful

article vector representations. This drop in performance was also observed for

the GloVe method in detailed tests on the ability of word vectors to resolve

analogy tasks, as shown in [55].

Looking at the more sophisticated methods, the dbow method appears to be

the clear winner in the bunch. This is interesting, given that dm (1.7.2 takes into

account the word order explicitly, while distributed bag of words (dbow 1.7.2)

does not, except indirectly through the simultaneous training of word vectors.

1.9.3 Categorization Accuracy

The next evaluation is to use the resulting article representations to power a

supervised classification task. To this end, we split the corpus randomly 60-40

into a training set and test set. we used the article vector representations as the

input to a neural network classifier with a single hidden layer with a rectified
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linear activation (ReLU):

g(z) = max(0, z) =


z z ≥ 0

0 z < 0
(1.76)

fed into a soft max classifier. The basic architecture is shown in Figure 1.17.

a hi

hi−1

hi+1

...

h0

...

hH

p0

...

pN

Figure 1.17: The architecture used for the classifier for the Classification evalu-
ation. The article is fed into a single hidden layer using a Rectified
Linear activation function, and then up to the output using a soft-
max activation.

In detail, given an article vector a, this means that the hidden representation

of dimension H is given by

h j = max

0,∑
i

W1
jiai + b1

j

 (1.77)

where the max is taken elementwise, followed by the softmax activation layer,
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computed as the softmax of another linear combination of the units below:

zk =
∑

j

W2
k jh j + b2

k (1.78)

pk =
ezk∑H

m=0 ezm
(1.79)

These outputs can be interpreted as predicted probabilities for the article to be

in each of the C distinct categories.

To train the classifier, we maximize the negative log likelihood of the predic-

tion probabilities output by the machine:

U = −
∑

i

δk,ci log pk , (1.80)

where ci is the category associated with article i. This is done by doing a modi-

fied form of stochastic gradient descent, in particular, the ADAM method [46],

attempting to learn the parameters (W1, b1,W2, b2) so as to achieve the greatest

performance on the training set. 50 epochs of training were applied, done in

minibatches of size 128. When training the minor category classifier, the output

was 143 dimensional, corresponding to the 143 minor primary categories, and

the hidden layer was set to 300 dimensions. For the major category classifier,

there were 6 outputs and the hidden layer was set to 50 dimensions.

To prevent overfitting and achieve better generalization, during training

dropout [39] was applied at the hidden layer, wherein we randomly turn half of

the hidden units off at each step during training, forcing the classifier to make

use of only partial information at training time. During test time, we no longer

drop out the hidden units, but multiply all of their outgoing weights by 1/2 so

as to achieve the same expected level of activation.

As a benchmark, the article vector powered classifiers were compared to var-

ious instances of Naive Bayes [70]. The (nb) row corresponds to vanilla Naive
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Bayes as implemented in sklearn.

Naive Bayes models the conditional probability of an article, as represented

by its bag of words representation ({wi}), being in a given class (ck), by utilizing

Bayes Theorem:

P(ck|{wi}) ∝ P({wi}|ck)P(ck) . (1.81)

The naive part comes in assuming that the conditional probabilities of word

occurrence are all independent:

P({wi}|ck) =
∏

i

P(wi|ck) . (1.82)

These conditional probabilities can be modelled empirically from the data,

where naively the probability of a word appearing in a given class is propor-

tional to the number of times that words appears in the given class. To help

improve the method, typically some form of smoothing is applied to the distri-

bution, the simplest version of which is Laplace smoothing, or additive smooth-

ing, wherein:

P(wi|ck) =
# word in ck + 1

# word in corpus + C
(1.83)

where C is the total number of categories.

Naive Bayes is equivalent to a linear classifier, that acts on the raw bag of

words representation of the article [70]:

log P(ci|aa) ∝ log P(ci) +
∑

j

wi jDBOW
a j (1.84)

where there is an explicit formula for the weights in terms of observed occur-

rence frequencies (wi j = log P(wi|ck)).

The (nbc) row corresponds to Naive Bayes applied after removing the 200

most commonly occurring words, i.e. removing the stop words before attempt-
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ing to classify. This is similar to the method currently employed by the arχiv

staff to help monitor incoming article classifications.

The (nbtfidf) method corresponds to a modified version of Naive Bayes that

acts on the tfidf representation of the articles.

Finally the (twcnb) method corresponds to the implementation of Naive

Bayes described in [85, 45], for which the authors achieved improved perfor-

mance over the previous Naive Bayes implementations.

The full results are shown in Table 1.10 below. The best results are high-

lighted in red, while the best in class results are shown in bold. The T[, t[

columns correspond to observed accuracies on the (Training, test) set of the mi-

nor classification task, and corresponding T], t] are the observed accuracies on

the major classification task.

The average word vector methods, wp b hs, wp tfidf hs, and wp tfidf ns

manage to beat the best Naive Bayes method, nbtfidf on the major classification

task, by a decent margin, achieving 94% accuracy on the test set. On the minor

classification task, the nbtfidf method barely beats the dbow and wp tfidf hs

methods with 70.2% and 69.7% accuracies respectfully. The dbow article vectors

also do fairly well on the major classification task, with 93% accuracy, compared

with the nbtfidf baseline of 90%.

The training set accuracies are not that meaningful, except that we see strong

evidence that Naive Bayes overfits on minor classification. Granted, the minor

classification task is quite difficult in this instance, with only ∼ 15, 000 articles

in our training set after our split, and as we observed in Figure 1.7, some of the

categories have very small populations for the January to March of 2015 time
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T[ t[ T] t]
rand 535 436 861 849

rand tfidf 669 401 811 764
wp hs 691 652 932 926
wp ns 665 637 926 924
wp g 544 523 900 901

wp b hs 702 670 938 936
wp b ns 676 651 933 931
wp b g 615 597 916 918

wp tfidf hs 751 697 943 936
wp tfidf ns 728 690 939 936
wp tfidf g 729 676 937 934

dm 863 653 937 907
dm 20 629 551 899 898

dm+ 900 678 952 923
dm+ 20 669 606 916 912

dbow 888 697 956 931
dbow 20 656 602 918 914

ga 629 385 871 846
ga 20 441 361 857 854

nb 871 654 916 887
nbc 917 673 925 891

nbtfidf 972 702 929 898
twcnb 607 487 854 854

(dbow,wp) 887 714 963 942

Table 1.10: Table of classification performance across models. The methods
were trained to classify the categories for both the minor categoriza-
tion task ([), and the major one (]). T denotes the error achieved
on the training set, t the test set error. The original corpus was split
(60%, 40%) into training and test sets. The classifier used for the ar-
ticle vector representations was a single layer neural network, with
retified linear activation of size (300, 50) for the (minor, major) task,
with dropout, fed into a log softmax layer, trained with the negative
log likelihood criterion. Training was done with stochastic gradient
descent, using the ADAM method [46] for 50 epochs with a mini-
batch of size 128.
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period. In comparison, the article vector powered neural network classifiers

with dropout don’t show as much overfitting.

For the classification task, the clear winner is the wp tfidf hs method.

Amongst the trained article vector methods, dbow is again the clear winner.

Given that the performance on the triplet tasks seemed to suggest that each

brought complementary representations of articles, we could hope to do better

by combining both. To this end, we concatenated the normalized article vec-

tors from both the wp tfidf hs and dbow methods, and passed this 400 dimen-

sional representation through the same classification framework. The results

are shown in blue in the last row (dbow, wp) of Table 1.10, and the combination

clearly wins on not only the major classifications, but also outperforms the best

performing Naive Bayes method on the minor classification task.

1.9.4 Euclidean Relationships

Just as we did with the word vectors, we can attempt to get a sense of the utility

for the article vectors by looking at the nearest articles to a given article. Our

previous two evaluations have suggested that the two approaches deserving

of further investigation are the wp tfidf hs and dbow method, which not only

perform the best across the triplet tasks, but appear to be complementary in

their performance. wp tfidf hs shows a remarkable ability to reflect the existing

categorization scheme on the arχiv, while the dbow method shows potential for

capturing the types of relationships that would be useful for a recommendation

system.

As our first test, we will probe using arχiv article 1502.03520: Random Walks
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on Context Spaces: Towards an Explanation of the Mysteries of Semantic Word

Embeddings [3]. The nearest articles for the dbow, wp tfidf hs, and bow meth-

ods are shown in Table 1.11 below.

1502.03520 0.000 Random Walks on Context Spaces: Towards an Explanation of the Mysteries
of Semantic Word Embeddings

dbow
1501.00358 0.441 Comprehend DeepWalk as Matrix Factorization
1503.06760 0.441 Unsupervised POS Induction with Word Embeddings
1502.07257 0.456 Breaking Sticks and Ambiguities with Adaptive Skip-gram
1502.04081 0.468 A Linear Dynamical System Model for Text
1502.03630 0.479 Ordering-sensitive and Semantic-aware Topic Modeling

wp tfidf hs
1502.04081 0.076 A Linear Dynamical System Model for Text
1502.07257 0.080 Breaking Sticks and Ambiguities with Adaptive Skip-gram
1503.05543 0.089 Text Segmentation based on Semantic Word Embeddings
1502.06922 0.089 Deep Sentence Embedding Using the Long Short Term Memory Network:

Analysis and Application to Information Retrieval
1502.06665 0.091 Reified Context Models

bow
1501.05200 0.107 Minimax Optimal Sparse Signal Recovery with Poisson Statistics
1503.03149 0.109 Stern-Gerlach surfing in laser wakefield accelerators
1501.02086 0.110 Renormalization of an Abelian Tensor Group Field Theory: Solution at

Leading Order
1501.04455 0.114 Eternal Higgs inflation and cosmological constant problem
1501.07773 0.114 Polyhedral Omega: A New Algorithm for Solving Linear Diophantine Systems

Table 1.11: Nearest article vectors to 1502.03520, a paper described in Section ??,
given by the dbow, wp tfidf hs, and bow methods. Articles deemed
unrelated are marked in grey.

Looking at the nearest neighbors, a few things are apparent. First, the bag

of words representation does not yield meaningful neighbor articles. It was

included here to give a sense of benchmark. The bag of words representation

is used throughout much of document retrieval generally, but does a poor job

here. The dbow and wp tfidf hs methods both give related articles, but the

dbow neighbors are arguably more in line with the spirit of the Arora article,

while it is clear the wp tfidf hs articles share a common vocabulary.

For instance, the last three articles listed for wp tfidf hs are about natural

language processing, including 1503.05543: Text Segmentation based on Seman-
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tic Word Embeddings, which appears as Chapter 2 in this work, but that article

is about segmenting documents into coherent sections, and while powered by

semantic word embeddings, and even references the Arora article, and so re-

lated, is not in the same spirit as the Arora et al. article.

Contrast this with the closest dbow article, 1501.00358: Comprehend Deep-

Walk as Matrix Factorization. This article is about interpreting DeepWalk [79],

which itself is basically word2vec applied to social networks, as a form of ma-

trix factorization. It is the complementary article to the Arora article, in the

social network context. Whether this serves as the most useful recommenda-

tion to a reader interested in the Arora article is uncertain, but it is interesting

that the dbow article representation marks it as the most similar article.

1502.04081 appears in both the dbow and wp tfidf hs lists. That article sim-

ilarly defines a generative model that can create semantic word embeddings,

but with a focus on part of speech tagging. 1502.07257 also appears in both

lists, and also extends skip-gram with a generative model, this time focussed on

disambiguating multiple senses for individual word usage.

Just as with the word vectors, we could try to probe more than nearest neigh-

bors, and instead try to probe linear combinations of article and word vec-

tors. Both dbow and wp tfidf hs have corresponding representations of each

word, dbow, because they are simultaneously trained, and wp tfidf hs, because

it is built from the word2vec hierarchical sampling word vectors. Since the

wp tfidf hs article vectors are built from a sum of all of their words, the article

vectors and word vectors have very different magnitudes. To alleviate this, for

the wp tfidf hs neighbors, the word and article vectors were first normalized

before added. The results are shown below in Table 1.12.
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0.000 1502.03520 - ‘text’ + ‘video’
dbow

1502.03520 0.178 Random Walks on Context Spaces: Towards an Explanation of the Mysteries
of Semantic Word Embeddings

1502.08029 0.466 Describing Videos by Exploiting Temporal Structure
1501.00358 0.494 Comprehend DeepWalk as Matrix Factorization
1503.08909 0.495 Beyond Short Snippets: Deep Networks for Video Classification
1501.07873 0.502 Deep Neural Networks for Sketch Recognition
1502.06108 0.503 Don’t Just Listen, Use Your Imagination: Leveraging Visual Common Sense

for Non-Visual Tasks
wp tfidf hs

1502.01094 0.232 Multimodal Task-Driven Dictionary Learning for Image Classification
1503.06642 0.238 Superpixelizing Binary MRF for Image Labeling Problems
1501.00092 0.241 Image Super-Resolution Using Deep Convolutional Networks
1502.03532 0.241 An equalised global graphical model-based approach for multi-camera

object tracking
1503.07989 0.242 Discriminative Bayesian Dictionary Learning for Classification
1503.00072 0.242 DeepTrack: Learning Discriminative Feature Representations Online for

Robust Visual Tracking

Table 1.12: Nearest article vectors to 1502.03520 - “text” + “video”. The
wp tfidf hs article and word vectors were normalized before being
combined.

In the dbow neighbors, we see the appearance not only of 1502.03520 itself,

but also one of its neighbor: 1501.00358. The remaining models deal roughly

with generative models for processing video, as we wished. In the wp tfidf hs

listing, only two of the articles 1502.03532 and 1503.00072 deal with video pro-

cessing.

To demonstrate that the resulting articles are not simply those nearest the

word “video”, in Table 1.13 below, we show those articles. Notice that this also

serves and an example of our ability to query articles based on words or a com-

bination of words.

Noticeably, none of these articles appeared in our previous query, and all of

them are clearly articles dealing with video processing.
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0.000 “video”
dbow

1503.06917 0.261 Unsupervised Video Analysis Based on a Spatiotemporal Saliency Detector
1501.05964 0.296 Advances in Human Action Recognition: A Survey
1501.04367 0.309 Reconstruction-free action inference from compressive imagers
1502.01812 0.320 Crowded Scene Analysis: A Survey
1503.00843 0.326 A Survey On Video Forgery Detection
1501.02825 0.337 A Survey on Recent Advances of Computer Vision Algorithms for Egocentric

Video
wp tfidf hs

1502.04132 0.216 Long-short Term Motion Feature for Action Classification and Retrieval
1503.06917 0.224 Unsupervised Video Analysis Based on a Spatiotemporal Saliency Detector
1501.06993 0.240 Feature Sampling Strategies for Action Recognition
1501.04367 0.244 Reconstruction-free action inference from compressive imagers
1502.00416 0.246 Towards a solid solution of real-time fire and flame detection
1501.02825 0.247 A Survey on Recent Advances of Computer Vision Algorithms for Egocentric

Video

Table 1.13: Nearest article vectors to “video”.

1.9.5 Visualization

To get a global sense of our article vectors, just as we did with the words, we

can visualize all of the article vectors by applying t-SNE. Since we are primarily

interested in cosine distance as our metric in the high dimensional space, we

first normalized all of the article vectors.

In Figure 1.18, we show the t-SNE projection for the wp tfidf hs article vec-

tors, colored according to the same colorscheme as used in Figure 1.7.

Notice how wonderfully the articles separate themselves into different major

and minor categories. We see not only a global structure separating physics

(green), math (blue), cs (red), stat (yellow), q-bio (orange), and q-fin (purple),

but homogeneous groupings of single shades are clearly visible.

Compare this to Figure 1.19, the projection of our dbow article vectors. The

two look remarkably similar. The same global and local structure can be seen

throughout.
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Contrast these with Figure 1.20, the projection of our random 200 dimen-

sional projection of the bag of words representations. Here an overall gradient

from red to green to blue is visible, but all of the detailed structure is lost.

Clearly, both the wp tfidf hs and dbow article vectors have a great deal of

structure, and the appearance of the same motifs in both projections suggest

that the structure is inherent in the arχiv dataset itself.

Finally, the dbow method simultaneously learns a representation for each

word. The t-SNE projection of these word vectors is shown in Figure 1.21.

Compared with the earlier word2vec skip-gram hierarchical softmax word

vector projection (Figure 1.18), these word vectors have much more fine grained

structure, with many small isolated clumps. Presumably, this additional struc-

ture comes from simultaneously training the article vectors, since the presence

of the article context could help resolve ambiguities in word meaning.

As another quick illustration of the difference of the dbow word vectors,

let’s compare the nearest neighbors to ‘singular value decomposition svd’, as

we did earlier in Table 1.5. The dbow nearest neighbors are arguably better.

This could be due to the additional information afforded by the article con-

texts, or it could be due to the extra number of iterations over the corpus. For

comparison then, we’ve also included the nearest neighbors for skip-gram hi-

erarchical softmax word2vec but allowing 25 iterations over the corpus (hs25),

the same number of iterations as dbow had. In spite of this, the dbow near-

est neighbors are arguably more meaningful, not only are terms such as ‘dis-

crete fourier transform dft‘ absent, but the meaningful neighbors have better

cosine similarity in the dbow set.
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Figure 1.18: tSNE projection of wp tfidf hs article vectors.
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Figure 1.19: tSNE projection of dbow article vectors.

The apparent boost we see in the utility of the word vectors, coupled with

the amazing performance of the dbow article vectors, suggests we could extract

even more semantic information if we incorporate additional metadata into our

training objectives.
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Figure 1.20: tSNE projection of the ‘rand’ article vectors, a random 200 dimen-
sional projection of the BOW representation.
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Figure 1.21: The word vectors simultaneously learned during dbow training.
This should be compared to the word vector embeddings, particu-
larly Figure 1.18.
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singular value decomposition svd
hs hs25 dbow

orthonormal columns 0.37 svd 0.30 svd 0.22
sparsifying basis 0.37 singular value 0.36 left singular vectors 0.26
eigen decomposition 0.37 tucker decomposition 0.45 singular value 0.27
rank deficient 0.38 orthonormal columns 0.45 right singular vectors 0.28
sparsified 0.38 dimensionality reduction 0.46 orthonormal columns 0.30
tucker decomposition 0.40 low rank 0.46 truncated svd 0.32
right singular vectors 0.40 discrete fourier transform dft 0.47 eigendecomposition 0.35
blockwise 0.40 blind source 0.47 eigen decomposition 0.37
efficiently computed 0.40 eigen decomposition 0.48 tucker decomposition 0.39
hard thresholding 0.41 alternating least squares 0.48 singular values 0.39

Table 1.14: Nearest word vectors to “singular value decomposition svd” and
their resulting cosine distance for the skip-gram hierarchical softmax
word2vec method (hs), the same method trained for 25 iterations
over the corpus (hs25) and the dbow word vectors.

1.10 Possible Extensions

Having demonstrated that we can learn meaningful word vectors, even on a

scientific corpus such as the arχiv, and that we can further learn useful vector

representations of articles, the next question is how we could extend this to

incorporate authorship, category, and readership data as well.

Our arχiv data naturally has a finite set of correspondences.

word-word - At the level of a text corpus, we have word-word correspon-

dences, such as those used to train our word vectors.

article-word - As we explored in the previous sections, we can associate each

article with its collection of words.

article-author - Each article naturally has the corresponding list of authors.

article-category - Each article has a single associated primary category, as well

as the potential for cross-listings on several categories.

86



article-reader - Having access to readership data at the cookie or ip address

level, those accesses are naturally connected with particular articles.

Ideally, we would like to simultaneously learn vector representations for

words, articles, authors, categories and readers, all living in the same vector

space.

There are three natural schemes to try to incorporate all of these sources of

information.

1.10.1 More averaging

The first scheme is the simplest. Given that we saw great success in represent-

ing articles as weighted averages of the word vectors making them up (Section

1.7.1), we could similarly try to represent authors, categories and readers by

just averaging the article vectors associated with them. If our article represen-

tations are useful, these other representations should also be useful. This is also

extremely cheap. For instance, below in Figure 1.22 we demonstrate a t-SNE

embeddings of category vectors, where the category is represented as a sum of

all of its article vectors.

As you can see, this embedding clearly respects some notion of similarity

between the different categories. The different major categories nicely sepa-

rate into different groups, with some illustrative exceptions. math.HO (His-

tory and Overview) is separated from the rest of the math categories, and in-

stead lies very close to physics.hist-ph (History and Philosophy of Physics).

physics.soc-ph (Physics and Society) lies closest to cs.SI (Social and Information
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Figure 1.22: A t-SNE projection of the category vectors formed from averaging
all of the normalized wp tfidf hs article vectors in each category.
The category vectors were normalized before the projection, and a
perplexity of 5 was used. The labels were adjusted by hand to avoid
overlaps.

Networks). The astro categories segregate themselves off from most of the rest

of physics, save physics.space-ph (Space Physics), physics.ao-ph (Atmospheric

and Oceanic Physics), physics.geo-ph (Geophysics), physics.pop-ph (Popular

Physics) and physics.hist-ph (History and Philosophy of Physics). We also see

hep-ex (High Energy Physics: Experiment), nucl-ex (Nuclear Experiment), nucl-

th (Nuclear Theory), hep-lat (High Energy Physics: Lattice) and hep-ph (High

Energy Physics: Phenomenology) segregate themselves a bit.
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1.10.2 Multiple Domain Matrix Factorization

The next scheme would be to treat each of our cooccurrence data sources as a

separate sparse matrix and attempt to simultaneously factor all of these matri-

ces with shared representation vectors. The first step in this direction was our

proposed GloVe article vectors of the previous section (Section 1.7.2). Incorpo-

rating more sources of information would amount to simply adding additional

terms to our loss function. As we saw earlier, however, each additional data ma-

trix brings with it a whole set of choices to make regarding the relative weight of

that factorization in the objective, not to mention the fact that we could consider

more general forms of objective, or even loss functions.

In the extreme, we could consider the general problem, in the spirit of [107],

wherein we would have as our parameters the vector representations for words

(W), context words (C), articles (A), authors (N), categories (C), and readers (R),

and try to simultaneously form low rank factorizations for each of our data

sources: word-word: X, article-word: D, article-author: I, article-category: G,

and article-reader: U. Naturally, being general, each of these factorizations

could have their own loss function:

U =
∑
(w,c)

LX(WwCc, Xwc) +
∑
(a,w)

LD(AaWw,Daw)

+
∑
(a,n)

LI(AaNn, Ian) +
∑
(a,g)

LT (AaGg,Tat) +
∑
(a,r)

LU(AaRr,Uar) (1.85)

As in GloVe , and our attempt to simultaneously learn word-word and article-

word representations, minimally we could take each of these losses to be a

weighted form of squared loss, with scalar coefficients to influence the rela-

tive contribution of each. But we could also consider more generalized forms

of loss, such as Hinge loss, Huber loss, or Ordinal Loss [107]. We could addi-
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tionally augment our objective with regularization terms, such as quadratic or

`1 regularization, which would penalize our vectors from getting too large and

help keep our vectors generalizable.

While Generalized Low Rank Models are powerful, they also prescribe a

large space of possibilities, and a proper exploration would require a great deal

of hyperparameter optimization. Our initial investigation of simultaneously

learning word and article vectors (ga, ga20) did not perform as well as even

the weighted average of the word vectors, leaving the outlook bleak for more

general factorization schemes.

1.10.3 Multiple Domain Negative Sampling

Finally, we could imagine extending the dbow method (Section 1.7.2) to incor-

porate additional sources of metadata. Unfortunately, in our earlier instance

of dbow, we had vector representations for both words and articles which we

passed to the hierarchical softmax classifier for the target words. The use of the

hierarchical softmax classifier meant that we did not simultaneously learn vec-

tor representations for our contexts. This itself doesn’t generalize well to our ad-

ditional sources of information. The article-author, article-category and article-

reader relationships are naturally expressed in terms of articles, not words. We

could create cooccurrences for each of these at the word level, feed them into

our hierarchical softmax classifier and hope for the best, but I suspect there is a

better way.

It should be more more natural to simultaneously learn word, context, arti-

cle, author , reader and category vectors using negative sampling (Section 1.3.4).
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As a reminder, when doing negative sampling, all we need is a model for our

noise distribution. This suggests a very natural scheme for training:

U =
∑

a

∑
w∈a

logσ(a · w) +
1
N

N∑
n=1

logσ(−a · w′) +
∑

c∈n(w)

logσ(w · c) +
1
N

N∑
i=1

logσ(−w · c′)




+
∑

a

∑
g∈a

logσ(a · g) +
1
N

N∑
n=1

logσ(−a · g′)


+
∑

a

∑
n∈a

logσ(a · n) +
1
N

N∑
n=1

logσ(−a · n′)


+
∑

a

∑
r∈a

logσ(a · r) +
1
N

N∑
n=1

logσ(−a · r′)


(1.86)

While this objective looks complex, it is simply the natural extension of negative

sampling to all of our data relationships. Here a is an article vector, w a word

vector, c the context vector, g a category vector, n an author vector and r a reader

vector. For each observed cooccurrence as we read our corpus, we take a single

step attempting to align the observed pair, then generate N false examples and

attempt to anti-align those pairs. A textual description of the objective can be

found in Figure 1.23.

The remaining task is to specify the distributions from which we generate

all of our noise examples. A natural choice would be the power law smoothed

unigram distribution for each type of vector. Just as we saw some evidence that

the simultaneous training of word and article vectors in the dbow method im-

proved our representation of both, we hope that simultaneous training with all

of our different forms of natural cooccurrence data would lead to very powerful

vector representations of all entities on the arχiv .

In future work, we hope to apply this method to a substantial portion of
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For each article (a):
Learn the word-article relationships
For each word in the article (w):

Align (a,w), and anti-align N random words (a,w′)
Learn the word-context relationships
For each nearby context word (c):

Align (w, c), and anti-align N random contexts (w, c′)
Learn the article-category relationships
For each associated category (g):

Align (a, g), and anti-align N random categories (a, g′)
Learn the article-author relationships
For each associated author (n):

Align (a, n), and anti-align N random authors (a, n′)
Learn the article-reader relationships
For each associated reader (r):

Align (a, r), and anti-align N random readers (a, r′)

Figure 1.23: Proposed method for simultaneously learning word, context, arti-
cle, author, category and reader vectors, in pseudocode.

the existing arχiv and analyze how useful the formed representations are at

powering various applications.

1.11 Possible Applications

Once we have developed vector representations of words and articles, or if we

happen to further form vector representations of categories, authors and read-

ers, the next question is what we can use these for.

1.11.1 Classification

As already explored in 1.9.3, the vector representations for articles can be used

to power a classification algorithm. We’ve already demonstrated the ability to

beat the existing Naive Bayes framework, including enhanced versions of Naive
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Bayes. With additional context information, if the article vectors are even more

meaningful, we could hope for even better classification accuracy. Addition-

ally, if we had vector representations for categories, that opens new doors for

potential classification schemes.

As we’ve seen hints already, there is some overlap between different arχiv

categories. Another very interesting question would be: How many categories

should there be, and how should they be organized? Having complete represen-

tations of all articles would allow us to start to probe this question. We could

imagine trying out various hierarchical clustering schemes [35], or more recent

Information based clustering approaches [99, 95] or convex clustering [13] to try

to estimate the correct number and distribution for arχiv categories.

As a first attempt in this direction, we can perform K-Means clustering with

varying number of clusters, and evaluate the Bayesian Information Criterion to

help decide the appropriate number of clusters [77]. Below in Figure 1.24, we

show the results obtained clustering the normalized dbow article vectors. This

crude estimate suggests that the optimal clustering of articles, as given by their

dbow vector representation, would require closer to 161 categories, rather than

the existing 143.

How similar are these proposed clusters in terms of the existing categoriza-

tion scheme? On average, each existing arχiv category has an entropy over the

k-mean cluster identities of around 2.5, corresponding to a perplexity of around

6. This means each of the existing arχiv categories, on average, has articles that

come from nearly 6 different k-mean clusters.

Some of these k-mean clusters themselves have a large entropy with re-
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Figure 1.24: The BIC criterion for various K-Means clusterings of the normal-
ized dbow article vectors. There is a maximum seen at 161 clusters.

spect to existing classifications. An example of one of these extended clusters is

shown below in Table 1.15. You’ll notice that the articles near the center of this

cluster are spread across many distinct arχiv categories, but all of the articles

clearly focus on matrix/tensor factorizations.

artid categories title
1503.08601 cs.NA Finding a low-rank basis in a matrix subspace
1503.00374 cs.DS A Randomized Algorithm for Approximating the Log Determinant of a Symmetric

Positive Definite Matrix
1501.05385 cs.SC Randomized Circulant and f-circulant Preprocessing
1501.06726 math.SP Further Results on Cauchy Tensors and Hankel Tensors
1501.01571 math.PR An Introduction to Matrix Concentration Inequalities
1501.07564 math.NA The Lyapunov matrix equation. Matrix analysis from a computational perspective
1503.07157 math.NA A randomized blocked algorithm for efficiently computing rank-revealing

factorizations of matrices
1503.06394 cs.DS Large-scale Log-determinant Computation through Stochastic Chebyshev Expansions
1503.02615 math.NA Approximation of functions of large matrices with Kronecker structure
1503.05479 cs.LG Interpolating Convex and Non-Convex Tensor Decompositions via the Subspace Norm

Table 1.15: The articles nearest one of the k-means clusters with a large entropy
relative to the existing categories. The articles are split amongst sev-
eral existing categories, but all deal with matrix / tensor factoriza-
tion.

On the other hand, some of the k-means clusters have low entropy with
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respect to the existing arχiv categories, such as the one in Table 1.16 below. This

cluster clearly focuses on the physics of active matter, and is concentrated on

cond-mat.soft articles. However cond-mat.soft itself is split amongst nearly 5

distinct k-means clusters.

artid categories title
1502.02229 cond-mat.soft Motility-induced phase separation and coarsening in active matter
1503.02610 cond-mat.soft Hydrodynamic Collective Effects of Active Protein Machines

in Solution and Lipid Bilayers
1501.07266 cond-mat.soft Tuned, driven, and active soft matter
1501.04054 cond-mat.stat-mech Rotational and translational diffusion in an interacting

active dumbbell system
1501.07185 physics.bio-ph Mechanics of motility initiation and motility arrest in active gels
1502.02437 cond-mat.soft Polarisation of cells and soft objects driven by mechanical

interactions: Consequences for migration and chemotaxis
1502.07144 cond-mat.soft Self-assembly of Active Colloidal Molecules with Dynamic Function
1502.07115 cond-mat.soft A minimal physical model captures the shapes of crawling cells
1503.06454 cond-mat.stat-mech Run-and-Tumble Dynamics of Self-Propelled Particles in Confinement
1502.03975 physics.bio-ph Amoeboid motion in confined geometry

Table 1.16: The articles nearest the center of a k-means cluster focused on the
physics of active matter. While these articles tend to come from
cond-mat.soft, cond-mat.soft itself is split amongst nearly 5 distinct
k-means clusters.

With more powerful article representations and more careful analysis of the

clustering, techniques like these could be used to help refine the existing cate-

gorization scheme.

1.11.2 Search

Currently, full text search on the arχiv is powered by a co-active learning al-

gorithm [84, 93]. This algorithm attempts to learn a better way of ranking the

search results over time by observing how often users click on the first, second,

third, etc. result from the search results. The co-active learning model used,

at its heart, is attempting to learn the optimal weights for a simple linear per-
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ceptron based on a feature vector representing both the context and the article,

φ(x, y). In practice, currently this feature vector is a 1000 dimensional vector in-

cluding query-article terms, such as whether the search term is in the article,

and query independent terms, such as the age of the document. The 3PR al-

gorithm used [84] is completely indifferent to this joint feature representation.

Naturally, the observed utility of word and article vectors suggests augmenting

the existing feature vector with features such as dot product between the vector

representing all of the words in the search query and each candidate article.

It is also natural to imagine personalizing the search, by including user spe-

cific features. In the vector representation context, this would naturally include

the dot product between the given user’s vector and each candidate article.

1.11.3 Recommendation

Related to search is the notion of recommendation. We could imagine attempt-

ing to suggest interesting articles to read associated with each article. This could

naturally be handled by the existing 3PR algorithm, again with suggested mod-

ifications involving the use of article vectors to power the similarity search.

Our article vectors suggest a natural sense of article similarity, as we ex-

plored in Section 1.9.4. We could imagine using them on their own to suggest

similar articles for each existing article. We could also imagine using the article

vectors as features for other article similarity or clustering algorithms, such as

Bayesian ranking [76].

Some caution is in order. Given the popularity of the arχiv, any global rec-
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ommendations that are made can have a large effect on the future citations of

those articles. An effect on future citations can be measured in terms of the order

articles appear in the nightly emails [34]. Instead of making global recommen-

dations to all users on the site, we could instead imagine personalized recom-

mendations tailored to the preferences of an individual reader. By personalizing

the recommendations, there would be less chance that articles would become

popular just because they were recommended as similar to existing popular ar-

ticles.

Vector representations could naturally be used either directly to power a per-

sonalized recommendation system, or as a source of powerful features for algo-

rithms such as 3PR [84].

1.11.4 Segmentation

While articles are the natural unit of text on the arχiv, often an entire article is

not the natural unit of text we consume when reading an article. Often times,

there is just a single section of an article of immediate interest.

Another intriguing possible use of our word vectors is as features of a seg-

mentation algorithm, that could automatically split an article up into relevant

sections. Once all of the articles have been split, we can imagine modifying

our search, similarity or recommendation tasks to target article segments rather

than entire articles themselves.

We will explore this use in detail in Chapter 2, but as a teaser, consider Figure

1.25. Here we have displayed the matrix of word vectors obtained just by scan-
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Figure 1.25: The word vector matrix for arχiv article: 1503.01104 which appears
as Chapter 3 in this work. You can see hints of structure that a seg-
mentation algorithm could take advantage of. This will be explored
in Chapter 2.

ning through all of the words in an article. There is clear evidence that structure

and breaks between different sections of the article can be seen at this level.

1.12 Conclusion

In this work, we gave an overview of modern techniques for learning vec-

tor representations of words. We introduced the data available on the arχiv

and analyzed a particular 3 month corpus. We trained various word vector

methods and analyzed their utility for finding similar words, solving analo-

gies and investigated their global structure with nonlinear embeddings. We

discussed various techniques for learning vector representations of articles, as

well as several quantitative and qualitative techniques for evaluating their util-

ity. We presented results obtained from various methods on our 3 month test

corpus, demonstrating that in general weighted word vector averages and the
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Distributed Bag of Words model performs the best. We demonstrated the ability

of these article vector representations to beat Naive Bayes at classification. We

investigated their microscopic and macroscopic structure. Finally, we discussed

various techniques for extending vector representations to authors, categories

and readers, as well as their potential utility to diverse tasks of interest.
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CHAPTER 2

SEGMENTATION

We explore the use of semantic word embeddings [62, 78, 54] in text seg-

mentation algorithms, including the C99 segmentation algorithm [14, 15] and

new algorithms inspired by distributed word vector representations. By devel-

oping a general framework for discussing a class of segmentation objectives,

we study the effectiveness of greedy versus exact optimization approaches and

suggest a new iterative refinement technique for improving the performance of

greedy strategies. We compare our results to known benchmarks [86, 64, 14, 15],

using known metrics [6, 80]. We demonstrate state-of-the-art performance for

an untrained method with our Content Vector Segmentation (CVS) on the Choi

test set. Finally, we apply the segmentation procedure to an in-the-wild dataset

consisting of text extracted from scholarly articles in the arXiv.org database. 1

2.1 Introduction

Segmenting text into naturally coherent sections has many useful applications

in information retrieval and automated text summarization, and has received

much attention in the past. An early text segmentation algorithm was the Text-

Tiling method introduced by Hearst [36] in 1997. Text was scanned linearly,

with a coherence calculated for each adjacent block, and a heuristic was used

to determine the locations of cuts. In addition to linear approaches, there are

text segmentation algorithms that optimize some scoring objective. An early

algorithm in this class was Choi’s C99 algorithm [14] in 2000, which also intro-

duced a benchmark segmentation dataset used by subsequent work. Instead of

1This is a reproduction of the arχiv posting: 1503.05543
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looking only at nearest neighbor coherence, the C99 algorithm computes a co-

herence score between all pairs of elements of text,2 and searches for a text seg-

mentation that optimizes an objective based on that scoring by greedily making

a succession of best cuts. Later work by Choi and collaborators [15] used dis-

tributed representations of words rather than a bag of words approach, with

the representations generated by LSA [22]. In 2001, Utiyama and Ishahara in-

troduce a statistical model for segmentation and optimized a posterior for the

segment boundaries. Moving beyond the greedy approaches, in 2004 Fragkou

et al. [26] attempted to find the optimal splitting for their own objective using

dynamic programming. More recent attempts at segmentation, including Misra

et al. [64] and Riedl and Biemann [86], use LDA based topic models to inform

the segmentation task. Du et al. consider structured topic models for segmen-

tation [20]. Eisenstein and Barzilay [24] and Dadachev et al. [17] both consider

a Bayesian approach to text segmentation. Most similar to our own work, Saka-

hara et al. [88] consider a segmentation algorithm which does affinity propa-

gation clustering on text representations built from word vectors learned from

word2vec [62].

For the most part, aside from [88], the non-topic model based segmentation

approaches have been based on relatively simple representations of the under-

lying text. Recent approaches to learning word vectors, including Mikolov et

al.’s word2vec [62], Pennington et al.’s GloVe [78] and Levy and Goldberg’s

pointwise mutual information [54], have proven remarkably successful in solv-

ing analogy tasks, machine translation [61], and sentiment analysis [78]. These

word vector approaches attempt to learn a log-linear model for word-word co-

occurrence statistics, such that the probability of two words (w,w′) appearing

2By ‘elements’, we mean the pieces of text combined in order to comprise the segments. In
the applications to be considered, the basic elements will be either sentences or words.
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near one another is proportional to the exponential of their dot product,

P(w|w′) =
exp(w · w′)∑
v exp(v · w′)

. (2.1)

The method relies on these word-word co-occurrence statistics encoding mean-

ingful semantic and syntactic relationships. Arora et al. [3] have shown how the

remarkable performance of these techniques can be understood in terms of rela-

tively mild assumptions about corpora statistics, which in turn can be recreated

with a simple generative model.

Here we explore the utility of word vectors for text segmentation, both in

the context of existing algorithms such as C99, and when used to construct new

segmentation objectives based on a generative model for segment formation.

We will first construct a framework for describing a family of segmentation al-

gorithms, then discuss the specific algorithms to be investigated in detail. We

then apply our modified algorithms both to the standard Choi test set and to a

test set generated from arXiv.org research articles.

2.2 Text Segmentation

The segmentation task is to split a text into contiguous coherent sections. We

first build a representation of the text, by splitting it into N basic elements, ~Vi

(i = 1, . . . ,N), each a D-dimensional feature vector Viα (α = 1, . . . ,D) representing

the element. Then we assign a score σ(i, j) to each candidate segment, comprised

of the ith through ( j − 1)th elements, and finally determine how to split the text

into the appropriate number of segments.

Denote a segmentation of text into K segments as a list of K indices s =
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(s1, s2, · · · , sK), where the k-th segment includes the elements ~Vi with sk−1 ≤ i < sk,

with s0 ≡ 0. For example, the string “aaabbcccdd” considered at the character

level would be properly split with s = (3, 5, 8, 10) into (“aaa”, “bb”, “ccc”, “dd”).

2.2.1 Representation

The text representation thus amounts to turning a plain text document T into

an (N × D)-dimensional matrix V, with N the number of initial elements to be

grouped into coherent segments and D the dimensionality of the element rep-

resentation. For example, if segmenting at the word level then N would be

the number of words in the text, and each word might be represented by a

D-dimensional vector, such as those obtained from GloVe [78]. If segmenting

instead at the sentence level, then N is the number of sentences in the text and

we must decide how to represent each sentence.

There are additional preprocessing decisions, for example using a stemming

algorithm or removing stop words before forming the representation. Particular

preprocessing decisions can have a large effect on the performance of segmen-

tation algorithms, but for discussing scoring functions and splitting methods

those decisions can be abstracted into the specification of the N × D matrix V.

2.2.2 Scoring

Having built an initial representation of the text, we next specify the coherence

of a segment of text with a scoring function σ(i, j), which acts on the repre-

sentation V and returns a score for the segment running from i (inclusive) to j
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(non-inclusive). The score can be a simple scalar or more general object. In addi-

tion to the scoring function, we need to specify how to return an aggregate score

for the entire segmentation. This score aggregation function ⊕ can be as simple

as adding the scores for the individual segments, or again some more general

function. The score S (s) for an overall segmentation is given by aggregating the

scores of all of the segments in the segmentation:

S (s) = σ(0, s1) ⊕ σ(s1, s2) ⊕ · · · ⊕ σ(sK−1, sK) . (2.2)

Finally, to frame the segmentation problem as a form of optimization, we

need to map the aggregated score to a single scalar. The key function (~·�) returns

this single number, so that the cost for the above segmentation is

C(s) = ~S (s)� . (2.3)

For most of the segmentation schemes to be considered, the score function

itself returns a scalar, so the score aggregation function ⊕will be taken as simple

addition with the key function the identity, but the generality here allows us to

incorporate the C99 segmentation algorithm [14] into the same framework.

2.2.3 Splitting

Having specified the representation of the text and scoring of the candidate seg-

ments, we need to prescribe how to choose the final segmentation. In this work,

we consider three methods: (1) greedy splitting, which at each step inserts the

best available segmentation boundary; (2) dynamic programming based seg-

mentation, which uses dynamic programming to find the optimal segmentation;
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and (3) an iterative refinement scheme, which starts with the greedy segmenta-

tion and then adjusts the boundaries to improve performance.

Greedy Segmentation

The greedy segmentation approach builds up a segmentation into K segments

by greedily inserting new boundaries at each step to minimize the aggregate

score:

s0 = {N} (2.4)

st+1 = arg min
i∈[1,N)

C(st ∪ {i}) (2.5)

until the desired number of splits is reached. Many published text segmentation

algorithms are greedy in nature, including the original C99 algorithm [14].

Dynamic Programming

The greedy segmentation algorithm is not guaranteed to find the optimal split-

ting, but dynamic programming methods can be used for the text segmentation

problem formulated in terms of optimizing a scoring objective. For a detailed

account of dynamic programming and segmentation in general, see the thesis

by Terzi [103]. Dynamic programming has been applied to text segmentation

in Fragkou et al. [26], with much success, but we will also consider here an op-

timization of the C99 segmentation algorithm using a dynamic programming

approach.

The goal of the dynamic programming approach is to split the segmentation

problem into a series of smaller segmentation problems, by expressing the op-
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timal segmentation of the first n elements of the sequence into k segments in

terms of the best choice for the last segmentation boundary. The aggregated

score S (n, k) for this optimal segmentation should be minimized with respect to

the key function ~·�:

S (n, 1) = σ(0, n) (2.6)

S (n, k) =
~·�

min
l<n

S (l, k − 1) ⊕ σ(l, n) . (2.7)

While the dynamic programming approach yields the optimal segmentation

for our decomposable score function, it can be costly to compute, especially for

long texts. In practice, both the optimal segmentation score and the resulting

segmentation can be found in one pass by building up a table of segmentation

scores and optimal cut indices one row at a time.

Iterative Relaxation

Inspired by the popular Lloyd algorithm for k-means, we attempt to retain the

computational benefit of the greedy segmentation approach, but realize addi-

tional performance gains by iteratively refining the segmentation. Since text

segmentation problems require contiguous blocks of text, a natural scheme for

relaxation is to try to move each segment boundary optimally while keeping the

edges to either side of it fixed:

st+1
k =

~·�

arg min
l∈(st

k−1, st
k+1)

(
σ(0, st

1) ⊕ · · ·

⊕ σ(st
k−1, l) ⊕ σ(l, st

k+1) ⊕ · · · ⊕ σ(st
K−1, s

t
K)

)
(2.8)

=
~·�

arg min
l∈(st

k−1, st
k+1)

S
(
st − {st

k} ∪ {l}
)

(2.9)
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We will see in practice that by 20 iterations it has typically converged to a fixed

point very close to the optimal dynamic programming segmentation.

2.3 Scoring Functions

In the experiments to follow, we will test various choices for the representation,

scoring function, and splitting method in the above general framework. The

segmentation algorithms to be considered fall into three groups:

2.3.1 C99 Segmentation

Choi’s C99 algorithm [14] was an early text segmentation algorithm with

promising results. The feature vector for an element of text is chosen as the

pairwise cosine distances with other elements of text, where those elements in

turn are represented by a bag of stemmed words vector (after preprocessing to

remove stop words):

Ai j =

∑
w fi,w f j,w√∑

w f 2
i,w

∑
w f 2

j,w

, (2.10)

with fi,w the frequency of word w in element i. The pairwise cosine distance ma-

trix is noisy for these features, and since only the relative values are meaningful,

C99 employs a ranking transformation, replacing each value of the matrix by the

fraction of its neighbors with smaller value:

Vi j =
1

r2 − 1

∑
i−r/2≤l≤i+r/2

l,i

∑
j−r/2≤m≤ j+r/2

m, j

[
Ai j > Alm

]
, (2.11)

where the neighborhood is an r × r block around the entry, the square brackets

mean 1 if the inequality is satisfied otherwise 0 (and values off the end of the
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matrix are not counted in the sum, or towards the normalization). Each element

of the text in the C99 algorithm is represented by a rank transformed vector of

its cosine distances to each other element.

The score function describes the average inter-sentence similarity by taking

the overall score to be

C(s) =

∑
k βk∑
k αk

, (2.12)

where βk =
∑

sk−1≤i<sk

∑
sk−1≤ j<sk

Vi j is the sum of all ranked cosine similarities in a

segment and αk = (sk+1 − sk)2 is the squared length of the segment. This score

function is still decomposable, but requires that we define the local score func-

tion to return a pair,

σ(i, j) =
(∑

i≤k< j

∑
i≤k< j

Vi j, ( j − i)2
)
, (2.13)

with score aggregation function defined as component addition,

(β1, α1) ⊕ (β2, α2) = (β1 + β2, α1 + α2) , (2.14)

and key function defined as division of the two components,

~(β, α)� =
β

α
. (2.15)

While earlier work with the C99 algorithm considered only a greedy splitting

approach, in the experiments that follow we will use our more general frame-

work to explore both optimal dynamic programming and refined iterative ver-

sions of C99. Follow-up work by Choi et al. [15] explored the effect of using

combinations of LSA word vectors in eqn. (2.10) in place of the fi,w. Below we

will explore the effect of using combinations of word vectors to represent the

elements.
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2.3.2 Average word vector

To assess the utility of word vectors in segmentation, we first investigate how

they can be used to improve the C99 algorithm, and then consider more general

scoring functions based on our word vector representation. As the representa-

tion of an element, we take

Vik =
∑

w

fiwvwk , (2.16)

with fiw representing the frequency of word w in element i, and vwk representing

the kth component of the word vector for word w as learned by a word vector

training algorithm, such as word2vec [62] or GloVe [78].

The length of word vectors varies strongly across the vocabulary and in gen-

eral correlates with word frequency. In order to mitigate the effect of common

words, we will sometimes weight the sum by the inverse document frequency

(idf) of the word in the corpus:

Vik =
∑

w

fiw log
|D|
d fw

vwk , (2.17)

where d fw is the number of documents in which word w appears. We can instead

normalize the word vectors before adding them together

Vik =
∑

w

fiwṽwk ṽwk =
vwk√∑

k v2
wk

, (2.18)

or both weight by idf and normalize.

Segmentation is a form of clustering, so a natural choice for scoring function

is the sum of square deviations from the mean of the segment, as used in k-
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means:

σ(i, j) =
∑

l

∑
k

(
Vlk − µk(i, j)

)2 (2.19)

where µk(i, j) =
1

j − i

j−1∑
l=i

Vlk , (2.20)

and which we call the Euclidean score function. Generally, however, cosine sim-

ilarity is used for word vectors, making angles between words more important

than distances. In some experiments, we therefore normalize the word vectors

first, so that a euclidean distance score better approximates the cosine distance

(recall |ṽ − w̃|22 = |ṽ|22 + |w̃|22 − 2ṽ · w̃ = 2(1 − ṽ · w̃) for normalized vectors).

2.3.3 Content Vector Segmentation (CVS)

Trained word vectors have a remarkable amount of structure. Analogy tasks

such as man:woman::king:? can be solved by finding the vector closest to the

linear query:

vwoman − vman + vking . (2.21)

Arora et al. [3] constructed a generative model of text that explains how this lin-

ear structure arises and can be maintained even in relatively low dimensional

vector models. The generative model consists of a content vector which under-

goes a random walk from a stationary distribution defined to be the product

distribution on each of its components ck, uniform on the interval [− 1
√

D
, 1
√

D
]

(with D the dimensionality of the word vectors). At each point in time, a word

vector is generated by the content vector according to a log-linear model:

P(w|c) =
1
Zc

exp(w · c) , Zc =
∑

v

exp(v · c) . (2.22)
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The slow drift of the content vectors helps to ensure that nearby words obey

with high probability a log-linear model for their co-occurrence probability:

log P(w,w′) =
1

2d
‖vw + vw′‖

2
− 2 log Z ± o(1) , (2.23)

for some fixed Z.

To segment text into coherent sections, we will boldly assume that the con-

tent vector in each putative segment is constant, and measure the log likeli-

hood that all words in the segment are drawn from the same content vector

c. (This is similar in spirit to the probabilistic segmentation technique proposed

by Utiyama and Isahara [108].) Assuming the word draws {wi} are independent,

we have that the log likelihood

log P({wi}|c) =
∑

i

log P(wi|c) ∝
∑

i

wi · c (2.24)

is proportional to the sum of the dot products of the word vectors wi with the

content vector c. We use a maximum likelihood estimate for the content vector:

c = arg max
c

log P(c|{wi}) (2.25)

= arg max
c

(
log P({wi}|c) + log P(c) − log P({wi})

)
(2.26)

∝ arg max
c

∑
wi · c s.t. −

1
√

D
≤ ck ≤

1
√

D
. (2.27)

This determines what we will call the Content Vector Segmentation (CVS) algo-

rithm, based on the score function

σ(i, j) =
∑
i≤l< j

∑
k

wlkck(i, j) . (2.28)

The score σ(i, j) for a segment (i, j) is the sum of the dot products of the word

vectors wlk with the maximum likelihood content vector c(i, j) for the segment,

with components given by

ck(i, j) = sign

∑
i≤l< j

wl,k

 1
√

D
. (2.29)
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The maximum likelihood content vector thus has components ± 1
√

D
, depending

on whether the sum of the word vector components in the segment is positive

or negative.

This score function will turn out to generate some of the most accurate seg-

mentation results. Note that CVS is completely untrained with respect to the

specific text to be segmented, relying only on a suitable set of word vectors, de-

rived from some corpus in the language of choice. While CVS is most justifiable

when working on the word vectors directly, we will also explore the effect of

normalizing the word vectors before applying the objective.

2.4 Experiments

To explore the efficacy of different segmentation strategies and algorithms, we

performed segmentation experiments on two datasets. The first is the Choi

dataset [14], a common benchmark used in earlier segmentation work, and the

second is a similarly constructed dataset based on articles uploaded to the arχiv,

as will be described in Section 2.4.3. All code and data used for these experi-

ments is available online3.

2.4.1 Evaluation

To evaluate the performance of our algorithms, we use two standard metrics:

the Pk metric and the WindowDiff (WD) metric. For text segmentation, near

misses should get more credit than far misses. The Pk metric [6], captures the

3github.com/alexalemi/segmentation
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probability for a probe composed of a pair of nearby elements (at constant dis-

tance positions (i, i + k)) to be placed in the same segment by both reference and

hypothesized segmentations. In particular, the Pk metric counts the number of

disagreements on the probe elements:

Pk =
1

N − k

N−k∑
i=1

[
δhyp(i, i + k) , δref(i, i + k)

]
(2.30)

k =
nearest
integer

1
2

# elements
# segments

− 1 ,

where δ(i, j) is equal to 1 or 0 according to whether or not both element i and

j are in the same segment in hypothesized and reference segmentations, resp.,

and the argument of the sum tests agreement of the hypothesis and reference

segmentations. (k is taken to be one less than the integer closest to half of the

number of elements divided by the number of segments in the reference seg-

mentation.) The total is then divided by the total number of probes. This metric

counts the number of disagreements, so lower scores indicate better agreement

between the two segmentations. Trivial strategies such as choosing only a sin-

gle segmentation, or giving each element its own segment, or giving constant

boundaries or random boundaries, tend to produce values of around 50% [6].

The Pk metric has the disadvantage that it penalizes false positives more

severely than false negatives, and can suffer when the distribution of segment

sizes varies. Pevzner and Hearst [80] introduced the WindowDiff (WD) metric:

WD =
1

N − k

N−k∑
i=1

[
bref(i, i + k) , bhyp(i, i + k)

]
, (2.31)

where b(i, j) counts the number of boundaries between location i and j in the

text, and an error is registered if the hypothesis and reference segmentations

disagree on the number of boundaries. In practice, the Pk and WD scores are

highly correlated, with Pk more prevalent in the literature — we will provide

both for most of the experiments here.
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2.4.2 Choi Dataset

The Choi dataset is used to test whether a segmentation algorithm can dis-

tinguish natural topic boundaries. It concatenates the first n sentences from

ten different documents chosen at random from a 124 document subset of the

Brown corpus (the ca**.pos and cj**.pos sets) [14]. The number of sen-

tences n taken from each document is chosen uniformly at random within a

range specified by the subset id (i.e., as min–max #sentences). There are four

ranges considered: (3–5, 6–8, 9–11, 3–11), the first three of which have 100 exam-

ple documents, and the last 400 documents. The dataset can be obtained from

an archived version of the C99 segmentation code release4. An extract from one

of the documents in the test set is shown in Fig. 2.1.

C99 benchmark

We will explore the effect of changing the representation and splitting strat-

egy of the C99 algorithm. In order to give fair comparisons we implemented

our own version of the C99 algorithm (oC99). The C99 performance depended

sensitively on the details of the text preprocessing. Details can be found in Ap-

pendix A.

Effect of word vectors on C99 variant

The first experiment explores the ability of word vectors to improve the perfor-

mance of the C99 algorithm. The word vectors were learned by GloVe [78] on a

4 http://web.archive.org/web/20010422042459/http://www.cs.man.ac.uk/

˜choif/software/C99-1.2-release.tgz (We thank with Martin Riedl for pointing us
to the dataset.)
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1 ==========

2 Some of the features of the top portions of Figure 1 and Figure 2 were mentioned in

discussing Table 1 .

3 First , the Onset Profile spreads across approximately 12 years for boys and 10 years

for girls .

4 In contrast , 20 of the 21 lines in the Completion Profile ( excluding center 5 for

boys and 4 for girls ) are bunched and extend over a much shorter period ,

approximately 30 months for boys and 40 months for girls .

5 The Maturity Chart for each sex demonstrates clearly that Onset is a phenomenon of

infancy and early childhood whereas Completion is a phenomenon of the later portion

of adolescence .

6 ==========

7 The many linguistic techniques for reducing the amount of dictionary information that

have been proposed all organize the dictionary ’s contents around prefixes , stems

, suffixes , etc .

8 .

9 A significant reduction in the voume of store information is thus realized , especially

for a highly inflected language such as Russian .

10 For English the reduction in size is less striking .

11 This approach requires that : ( 1 ) each text word be separated into smaller elements

to establish a correspondence between the occurrence and dictionary entries , and (

2 ) the information retrieved from several entries in the dictionary be

synthesized into a description of the particular word .

12 ==========

Figure 2.1: Example of two segments from the Choi dataset, taken from an entry
in the 3–5 set. Note the appearance of a “sentence” with the single
character “.” in the second segment on line 8. These short sentences
can confound the benchmarks.

42 billion word set of the Common Crawl corpus in 300 dimensions5. We em-

phasize that these word vectors were not trained on the Brown or Choi datasets

directly, and instead come from a general corpus of English. These vectors were

chosen in order to isolate any improvement due to the word vectors from any

confounding effects due to details of the training procedure. The results are

summarized in Table 2.1 below. The upper section cites results from [15], ex-

ploring the utility of using LSA word vectors, and showed an improvement of a

few percent over their baseline C99 implementation. The middle section shows

results from [86], which augmented the C99 method by representing each ele-

ment with a histogram of topics learned from LDA. Our results are in the lower

5Obtainable from http://www-nlp.stanford.edu/data/glove.42B.300d.txt.gz
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section, showing how word vectors improve the performance of the algorithm.

Pk WD
Algorithm 3–5 6–8 9–11 3–11 3–5 6–8 9–11 3–11
C99 [15] 12 11 9 9
C99LSA 9 10 7 5
C99 [86] 11.20 12.07
C99LDA 4.16 4.89
oC99 14.22 12.20 11.59 15.56 14.22 12.22 11.60 15.64
oC99tf 12.14 13.17 14.60 14.91 12.14 13.34 15.22 15.22
oC99tfidf 10.27 12.23 15.87 14.78 10.27 12.30 16.29 14.96
oC99k50 20.39 21.13 23.76 24.33 20.39 21.34 23.26 24.63
oC99k200 18.60 17.37 19.42 20.85 18.60 17.42 19.60 20.97

Table 2.1: Effect of using word vectors in the C99 text segmentation algorithm.
Pk and WD results are shown (smaller values indicate better perfor-
mance). The top section (C99 vs. C99LSA) shows the few percent
improvement over the C99 baseline reported in [15] of using LSA to
encode the words. The middle section (C99 vs. C99LDA) shows the
effect of modifying the C99 algorithm to work on histograms of LDA
topics in each sentence, from [86]. The bottom section shows the effect
of using word vectors trained from GloVe [78] in our oC99 implemen-
tation of the C99 segmentation algorithm. The oC99tf implementation
sums the word vectors in each sentence, with no rank transformation,
after removing stop words and punctuation. oC99tfidf weights the
sum by the log of the inverse document frequency of each word. The
oC99k models use the word vectors to form a topic model by doing
spherical k-means on the word vectors. oC99k50 uses 50 clusters and
oC99k200 uses 200.

In each of these last experiments, we turned off the rank transformation,

pruned the stop words and punctuation, but did not stem the vocabulary. Word

vectors can be incorporated in a few natural ways. Vectors for each word in a

sentence can simply be summed, giving results shown in the oC99tf row. But

all words are not created equal, so the sentence representation might be domi-

nated by the vectors for common words. In the oC99tfidf row, the word vectors

are weighted by idfi = log 500
dfi

(i.e., the log of the inverse document frequency

of each word in the Brown corpus, which has 500 documents in total) before
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summation. We see some improvement from using word vectors, for example

the Pk of 14.78% for the oC99tfidf method on the 3–11 set, compared to Pk of

15.56% for our baseline C99 implementation. On the shorter 3–5 test set, our

oC99tfidf method achieves Pk of 10.27% versus the baseline oC99 Pk of 14.22% .

To compare to the various topic model based approaches, e.g. [86], we perform

spherical k-means clustering on the word vectors [16] and represent each sen-

tence as a histogram of its word clusters (i.e., as a vector in the space of clusters,

with components equal to the number of its words in that that cluster). In this

case, the word topic representations (oC99k50 and oC99k200 in Table 2.1) do not

perform as well as the C99 variants of [86]. But as was noted in [86], those topic

models were trained on cross-validated subsets of the Choi dataset, and ben-

efited from seeing virtually all of the sentences in the test sets already in each

training set, so have an unfair advantage that would not necessarily convey to

real world applications. Overall, the results in Table 2.1 illustrate that the word

vectors obtained from GloVe can markedly improve existing segmentation al-

gorithms.

Alternative Scoring frameworks

The use of word vectors permits consideration of natural scoring functions other

than C99-style segmentation scoring. The second experiment examines alterna-

tive scoring frameworks using the same GloVe word vectors as in the previous

experiment. To test the utility of the scoring functions more directly, for these

experiments we used the optimal dynamic programming segmentation. Results

are summarized in Table 2.2, which shows the average Pk and WD scores on the

3–11 subset of the Choi dataset. In all cases, we removed stop words and punc-
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Algorithm rep n Pk WD

oC99 tf - 11.78 11.94
tfidf - 12.19 12.27

Euclidean
tf F 7.68 8.28

T 9.18 10.83

tfidf F 12.89 14.27
T 8.32 8.95

Content (CVS)
tf F 5.29 5.39

T 5.42 5.55

tfidf F 5.75 5.87
T 5.03 5.12

Table 2.2: Results obtained by varying the scoring function. These runs were on
the 3–11 set from the Choi database, with a word cut of 5 applied, after
preprocessing to remove stop words and punctuation, but without
stemming. The CVS method does remarkably better than either the
C99 method or a Euclidean distance-based scoring function.

tuation, did not stem, but after preprocessing removed sentences with fewer

than 5 words.

Note first that the dynamic programming results for our implementation of

C99 with tf weights gives Pk = 11.78%, 3% better than the greedy version re-

sult of 14.91% reported in Table 2.1. This demonstrates that the original C99

algorithm and its applications can benefit from a more exact minimization than

given by the greedy approach. We considered two natural score functions: the

Euclidean scoring function (eqn. (2.20)) which minimizes the sum of the square

deviations of each vector in a segment from the average vector of the segment,

and the Content Vector scoring (CVS) (eqn. (2.28) of section 2.3.3), which uses

an approximate log posterior for the words in the segment, as determined from

its maximum likelihood content vector. In each case, we consider vectors for

each sentence generated both as a strict sum of the words comprising it (tf ap-

proach), and as a sum weighted by the log idf (tfidf approach, as in sec. 2.4.2).

Additionally, we consider the effect of normalizing the element vectors before
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starting the score minimization, as indicated by the n column.

The CVS score function eqn. (2.28) performs the best overall, with Pk scores

below 6%, indicating an improved segmentation performance using a score

function adapted to the choice of representation. While the most principled

score function would be the Content score function using tf weighted element

vectors without normalization, the normalized tfidf scheme actually performs

the best. This is probably due to the uncharacteristically large effect common

words have on the element representation, which the log idf weights and the

normalization help to mitigate.

Strictly speaking, the idf weighted schemes cannot claim to be completely

untrained, as they benefit from word usage statistics in the Choi test set, but the

raw CVS method still demonstrates a marked improvement on the 3–11 subset,

5.29% Pk versus the optimal C99 baseline of 11.78% Pk.

Effect of Splitting Strategy

To explore the effect of the splitting strategy and to compare with our overall

results on the Choi test set against other published benchmarks, in our third ex-

periment we ran the raw CVS method against all of the Choi test subsets, using

all three splitting strategies discussed: greedy, refined, and dynamic program-

ming. These results are summarized in Table 2.3.

Overall, our method outperforms all previous untrained methods. As com-

mented regarding Table 2.1 (toward the end of subsection 2.4.2), we have in-

cluded the results of the topic modeling based approaches M09 [64], R12 [86]

and D13 [17] for reference. But due to repeat appearance of the same sentences
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Alg 3–5 6–8 9–11 3–11
TT [14] 44 43 48 46
C99 [14] 12 9 9 12
C01 [15] 10 7 5 9
U00 [108] 9 7 5 10
F04 [26] 5.5 3.0 1.3 7.0
G-CVS 5.14 4.82 6.38 6.49
R-CVS 3.92 3.75 5.17 5.65
DP-CVS 3.41 3.45 4.45 5..29
M09 [64] 2.2 2.3 4.1 2.3
R12 [86] 1.24 0.76 0.56 0.95
D13 [20] 1.0 0.9 1.2 0.6

Table 2.3: Some published Pk results on the Choi dataset against our raw CVS
method. G-CVS uses a greedy splitting strategy, R-CVS uses up to
20 iterations to refine the results of the greedy strategy, and DP-CVS
shows the optimal results obtained by dynamic programming. We
include the topic modeling results M09, R12 and D13 for reference,
but for reasons detailed in the text do not regard them as comparable,
due to their mingling of test and training samples.

throughout each section of the Choi dataset, methods that split that dataset into

test and training sets have unavoidable access to the entirety of the test set dur-

ing training, albeit in different order.6 These results can therefore only be com-

pared to other algorithms permitted to make extensive use of the test data dur-

ing cross-validation training. Only the TT, C99, U00 and raw CVS method can

be considered as completely untrained. The C01 method derives its LSA vec-

tors from the Brown corpus, from which the Choi test set is constructed, but

that provides only a weak benefit, and the F04 method is additionally trained

on a subset of the test set to achieve its best performance, but its use only of idf

values provides a similarly weak benefit.

We emphasize that the raw CVS method is completely independent of the

Choi test set, using word vectors derived from a completely different corpus. In

6In [86], it is observed that “This makes the Choi data set artificially easy for supervised
approaches.” See appendix B.
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Figure 2.2: Results from last column of Table 2.3 reproduced to highlight the
performance of the CVS segmentation algorithm compared to sim-
ilar untrained algorithms. Its superior performance in an unsuper-
vised setting suggests applications on documents “in the wild”.

Fig. 2.2, we reproduce the relevant results from the last column of Table 2.1 to

highlight the performance benefits provided by the semantic word embedding.

Note also the surprising performance of the refined splitting strategy, with

the R-CVS results in Table 2.3 much lower than the greedy G-CVS results, and

moving close to the optimal DP-CVS results, at far lower computational cost.

In particular, taking the dynamic programming segmentation as the true seg-

mentation, we can assess the performance of the refined strategy. As seen

in Table 2.4, the refined segmentation very closely approximates the optimal

segmentation. This is important in practice since the dynamic programming

segmentation is much slower, taking five times longer to compute on the 3–11

subset of the Choi test set. The dynamic programming segmentation becomes

computationally infeasible to do at the scale of word level segmentation on the

arχiv dataset considered in the next section, whereas the refined segmentation

method remains eminently feasible.
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3–5 6–8 9–11 3–11
R-CVS vs DP-CVS [14] 0.90 0.65 1.16 1.15

Table 2.4: Treating the dynamic programming splits as the true answer, the error
of the refined splits as measured in Pk across the subsets of the Choi
test set.

2.4.3 Arχiv Dataset

Performance evaluation on the Choi test set implements segmentation at the

sentence level, i.e., with segments of composed of sentences as the basic ele-

ments. But text sources do not necessarily have well-marked sentence bound-

aries. The arχiv is a repository of scientific articles which for practical reasons

extracts text from PDF documents (typically using pdfminer/pdf2txt.py).

That Postscript-based format was originally intended only as a means of for-

matting text on a page, rather than as a network transmission format encoding

syntactic or semantic information. The result is often somewhat corrupted, ei-

ther due to the handling of mathematical notation, the presence of footers and

headers, or even just font encoding issues.

To test the segmentation algorithms in a realistic setting, we created a test

set similar to the Choi test set, but based on text extracted from PDFs retrieved

from the arχiv database. Each test document is composed of a random num-

ber of contiguous words, uniformly chosen between 100 and 300, sampled at

random from the text obtained from arχiv articles. The text was preprocessed

by lowercasing and inserting spaces around every non-alphanumeric character,

then splitting on whitespace to tokenize. An example of two of the segments of

the first test document is shown in Figure 2.3 below.

This is a much more difficult segmentation task: due to the presence of num-
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1 . nature_414 : 441 - 443 . 12 seinen , i . and schram a . 2006 . social_status and

group norms : indirect_reciprocity in a helping experiment .

european_economic_review 50 : 581 - 602 . silva , e . r . , jaffe , k . 2002 .

expanded food choice as a possible factor in the evolution of eusociality in

vespidae sociobiology 39 : 25 - 36 . smith , j . , van dyken , j . d . , zeejune ,

p . c . 2010 . a generalization of hamilton ’ s rule for the evolution of microbial

cooperation science_328 , 1700 - 1703 . zhang , j . , wang , j . , sun , s . ,

wang , l . , wang , z . , xia , c . 2012 . effect of growing size of interaction

neighbors on the evolution of cooperation in spatial snowdrift_game .

chinese_science bulletin 57 : 724 - 728 . zimmerman , m . , egu ‘i luz , v . ,

san_miguel ,

2 of ) e , equipped_with the topology of weak_convergence . we will state some results

about random measures . 10 definition a . 1 ( first two moment measures ) . for a

random_variable z , taking values in p ( e ) , and k = 1 , 2 , . . . , there is a

uniquely_determined measure µ ( k ) on b ( ek ) such that e [ z ( a1 ) ·_·_· z ( ak )

] = µ ( k ) ( a1 × ·_·_· × ak ) for a1 , . . . , ak ∈ b ( e ) . this is called the

kth_moment measure . equivalently , µ ( k ) is the unique measure such that e [ hz

, φ 1i ·_·_· hz , φ ki ] = h µ ( k ) , φ 1 ·_·_· φ ki , where h . , . i denotes

integration . lemma a . 2 ( characterisation of deterministic random measures ) .

let z be a random_variable_taking values in p ( e ) with the first two moment

measures µ : = µ ( 1 ) and µ ( 2 ) . then the following_assertions_are_equivalent :

1 . there is ν ∈ p ( e ) with z = ν , almost_surely . 2 . the second_moment

measure has product - form , i . e . µ ( 2 ) = µ ⊗ µ ( which is equivalent to e [

hz , φ 1i · hz , φ 2i ] = h µ , φ 1i · h µ , φ 2i ( this is in fact equivalent to e

[ hz , φ i2 ]

Figure 2.3: Example of two of the segments from a document in the arχiv test
set.

bers and many periods in references, there are no clear sentence boundaries on

which to initially group the text, and no natural boundaries are suggested in

the test set examples. Here segmentation algorithms must work directly at the

“word” level, where word can mean a punctuation mark. The presence of gar-

bled mathematical formulae adds to the difficulty of making sense of certain

streams of text.

In Table 2.5, we summarize the results of three word vector powered ap-

proaches, comparing a C99 style algorithm to our content vector based meth-

ods, both for unnormalized and normalized word vectors. Since much of the

language of the scientific articles is specialized, the word vectors used in this

case were obtained from GloVe trained on a corpus of similarly preprocessed
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Alg S Pk WD
oC99 G 47.26 47.26
oC99 R 47.06 49.16
CVS G 26.07 28.23
CVS R 25.55 27.73

CVSn G 24.63 26.69
CVSn R 24..03 26..15

Table 2.5: Results on the arχiv test set for the C99 method using word vectors
(oC99), our CVS method, and CVS method with normalized word
vectors (CVSn). The Pk and WD metrics are given for both the greedy
(G) and refined splitting strategies (R), with respect to the reference
segmentation in the test set. The refined strategy was allowed up to
20 iterations to converge. The refinement converged for all of the CVS
runs, but failed to converge for some documents in the test set under
the C99 method. Refinement improved performance in all cases, and
our CVS methods improve significantly over the C99 method for this
task.

texts from 98,392 arχiv articles. (Since the elements are now words rather than

sentences, the only issue involves whether or not those word vectors are nor-

malized.) As mentioned, the dynamic programming approach is prohibitively

expensive for this dataset.

We see that the CVS method performs far better on the test set than the C99

style segmentation using word vectors. The Pk and WD values obtained are not

as impressive as those obtained on the Choi test set, but this test set offers a

much more challenging segmentation task: it requires the methods to work at

the level of words, and as well includes the possibility that natural topic bound-

aries occur in the test set segments themselves. The segmentations obtained

with the CVS method typically appear sensibly split on section boundaries, ref-

erences and similar formatting boundaries, not known in advance to the algo-

rithm.

As a final illustration of the effectiveness of our algorithm at segmenting
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Figure 2.4: Effect of applying our segmentation algorithm to this paper with 40
segments. The segments are denoted with alternating color overlays.
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scientific articles, we’ve applied the best performing algorithm to the current

article. Figure 2.4 shows how the algorithm segments the article roughly along

section borders.

2.5 Conclusion

We have presented a general framework for describing and developing seg-

mentation algorithms, and compared some existing and new strategies for rep-

resentation, scoring and splitting. We have demonstrated the utility of semantic

word embeddings for segmentation, both in existing algorithms and in new

segmentation algorithms. On a real world segmentation task at word level,

we’ve demonstrated the ability to generate useful segmentations of scientific

articles. In future work, we plan to use this segmentation technique to facilitate

retrieval of documents with segments of concentrated content, and to identify

documents with localized sections of similar content.
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CHAPTER 3

ZOMBIES

We use a popular fictional disease, zombies, in order to introduce techniques

used in modern epidemiology modelling, and ideas and techniques used in the

numerical study of critical phenomena. We consider variants of zombie mod-

els, from fully connected continuous time dynamics to a full scale exact stochas-

tic dynamic simulation of a zombie outbreak on the continental United States.

Along the way, we offer a closed form analytical expression for the fully con-

nected differential equation, and demonstrate that the single person per site

two dimensional square lattice version of zombies lies in the percolation uni-

versality class. We end with a quantitative study of the full scale US outbreak,

including the average susceptibility of different geographical regions. 1

3.1 Introduction

Zombies captivate the imagination. The idea of a deadly disease that not only

kills its hosts, but turns those hosts into deadly vectors for the disease is scary

enough to fuel an entire genre of horror stories and films. But at its root, zom-

bism is just that – a (fictional) disease – and so should be amenable to the same

kind of analysis and study that we use to combat more traditional diseases.

Much scholarly attention has focused on more traditional human diseases

[44], but recently, academic attention has turned a bit of thought onto zombies as

a unique and interesting modification of classic disease models. One of the first

1This is a reproduction of the arχiv posting: 1503.01104
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academic accounts of zombies was the 2009 article by Munz et al. [69], in which

an early form of a compartmental model of zombism was introduced. Since

then, there have been several interesting papers published including works that

perform Bayesian estimations of the zombie disease parameters [114], look at

how emotional factors impact the spread of zombies [73], using zombies to gain

insight into models of politics [40], or into the interaction of a zombie epidemic

and social dynamics [89, 68]. Additional essays can be found in two books col-

lecting academic essays centered around zombism [11, 96]

Besides the academic papers, zombies have seen a resurgence in fiction. Of

particular note are the works of Max Brooks, including a detailed Zombie Sur-

vival Guide [8], as well as an oral history of the first zombie war [9] in a hypoth-

esized post outbreak world. In both these works Brooks provides a rich source

of information about zombies and their behavior. In particular, he makes the

connection to disease explicit, describing zombies as the result of a hypothetical

virus, Solanum.

Zombies form a wonderful model system to illustrate modern epidemiologi-

cal tools drawn from statistical mechanics, computational chemistry, and math-

ematical modeling. They also form an ideal vehicle for public outreach: the

Center for Disease Control uses preparation for a zombie apocalypse [74, 75] to

promote emergency preparedness. In this work, we will build up to a full-scale

simulation of a zombie outbreak in the continental United States, with realistic

values drawn from the literature and popular culture (section 3.5, simulation

accessible online 2). Before that, we shall use statistical mechanics to scrutinize

the threshold of zombie virulence that determines whether humanity survives

(section 3.4). Preceding that, we shall show how methods from computational

2http://mattbierbaum.github.io/zombies-usa/
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chemistry can be used to simulate every individual heroic encounter between a

human and a zombie (section 3.3). But we begin by describing and analyzing

a simple model of zombies (the S ZR model) – the simplest and most natural

generalization to the classic S IR (Susceptible-Infected-Recovered) model used

to describe infectious disease spread in epidemiology.

3.2 S ZR Model

We start with a simple model of zombies, the S ZR model. There are three com-

partments in the model: S represents the susceptible population, the uninfected

humans; Z represents the infected state, zombies; and R represents our removed

state, in this case zombies that have been terminated by humans (canonically

by destroying their brain so as to render them inoperable). There are two tran-

sitions possible: a human can become infected if they are bitten by a zombie,

and a zombie can be destroyed by direct action by a human. There are two pa-

rameters governing these transitions: β, the bite parameter determines the rate

at which a zombie will bite a human if they are in contact, and κ the kill param-

eter that gives the rate that a human kills the zombie. Rendered as a system of

coupled differential equations, we obtain, for a particular interaction site:

Ṡ = −βS Z (3.1)

Ż = (β − κ)S Z (3.2)

Ṙ = κS Z (3.3)

Notice that these interactions are density dependent, in the sense that the rate at

which we convert humans to zombies and kill zombies is dependent on the total

count of zombies and humans in this site. This is in contrast with most mod-
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els of human diseases, which frequently adopt frequency dependent interactions

wherein S ,Z,R would have been interpreted as the fraction of the population in

the corresponding state.

This distinction will become stark once we consider large simulations with

very inhomogeneous populations. By claiming that zombies can be modeled

by a single bite parameter β that itself is a rate per person per unit time, we are

claiming that a zombie in a block with 5,000 people would be one hundred times

as effective at infecting new zombies as a zombie in a block with fifty people;

similarly the zombie in question would be killed one hundred times faster. This

would seem false for an ordinary disease like the flu, but in the case of zombies,

we argue that it is appropriate. Zombies directly seek out hosts to infect, at

which point the human and zombie engage in a duel to the (un)death.

To facilitate analysis we can nondimensionalize the equations by choosing

a relevant population size N, and recasting in terms of the dimensionless time

parameter τ = tβN and dimensionless virulence α = κ/β

dS
dτ

= −
S Z
N

dZ
dτ

= (1 − α)
S Z
N

(3.4)

dR
dτ

= α
S Z
N

Unlike a traditional disease (e.g., as modeled by S IR), for the zombie model,

we have a stable configuration when either the human or the zombie population

is defeated (S = 0 or Z = 0). Furthermore, unlike S IR, S ZR admits an analytical
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solution, assuming R(0) = 0, and with Z0 ≡ Z(0), S 0 ≡ S (0):

P ≡ Z0 + (1 − α)S 0 (3.5)

µ ≡
S 0

Z0
(1 − α) =

P
Z0
− 1 (3.6)

f (τ) ≡
Pµ

eτP/N + µ
(3.7)

Z(τ) = P − f (τ) (3.8)

S (τ) =
f (τ)

1 − α
(3.9)

Given the analytical solution, it is clear to see that the sign of P governs whether

there will eventually be humans or zombies in the final state. If α < 1, P > 0, so

lim
τ→∞

f (τ) = 0 (3.10)

lim
τ→∞

Z(τ) = P = Z0 + (1 − α)S 0 (3.11)

lim
τ→∞

S (τ) = 0 (3.12)

and the system will always flow to a final state composed of entirely zombies

and no humans, where P denotes the number of zombies that survive.

If however, α > 1, humans are more effective at killing zombies than zombies

are at biting humans. With enough zombies in the initial state, we can still

convert all of the humans before they have time to kill all of the zombies.

We can recast the dynamics in terms of the variables P ≡ Z + (1 − α)S and

χ = S/Z to gain further insights. First note that:

dP
dτ

= P′ = Z′ + (1 − α)S ′ (3.13)

= (1 − α)
S Z
N
− (1 − α)

S Z
N

= 0 (3.14)
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so P is a constant of the dynamics. As for χ:

χ′ =
S ′

Z
−

S Z′

Z2 (3.15)

= −
S
N
− (1 − α)

S
N

S
Z

(3.16)

= −
S
N

(1 + (1 − α)) χ (3.17)

= −
P
N
χ (3.18)

Hence if we choose N = |P|, we end up with the very simple dynamics:

P′(τ) = 0 (3.19)

P(τ) = P0 = Z(τ) + (1 − α)S (τ) = Z0 + (1 − α)S 0 (3.20)

χ′(τ) =


−χ P > 0

+χ P < 0
(3.21)

χ(τ) =
S (τ)
Z(τ)

= χ0


e−τ P > 0

e+τ P < 0
(3.22)

χ0 ≡
S 0

Z0
(3.23)

Here we see that the dynamics is simply an exponential decay or increase in the

ratio of humans to zombies χ = S/Z. The final populations in either case are

easy to see due to the conservation of P. If zombies win we have

Z∞ = Z0 + (1 − α)S 0 (3.24)

And if humans win

S∞ = S 0 −
Z0

α − 1
(3.25)
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S IR model

This dynamics should be compared to the similarly nondimensionlized density-

dependent S IR model:

dS
dτ

= −
S I
N

(3.26)

dI
dτ

=

(S
N
− µ

)
I (3.27)

dR
dτ

= µI (3.28)

Here τ = tβN as above, but µ = ν/(βN) = R−1
0 , because in the S IR model our

infected population recovers on its own. This is contrasted with S ZR, where

the process of infection and recovery have the same functional form, depend-

ing on the product S Z. This µ is the inverse of the usual R0 parameter used to

denote the infectivity of the S IR model, here used to make a closer analogy to

the S ZR model. It is this parameter that principally governs whether we have

an outbreak or not. Unlike the α parameter for S ZR which depends only on

our disease constants β, κ, the relevant virulence for the density dependent S IR

model (µ) has a population dependence.

Notice again that while the only stable configuration for the S IR model is

when there is no infected population (I = 0), the S ZR model is stable when

either the humans or zombies are depleted (S = 0 or Z = 0).

The S IR model does not admit a closed form analytical solution, but we can

find a parametric solution by dividing the first equation by the third, revealing.

S (τ) = S 0e−
(R(τ)−R0)

µN (3.29)

Using the observation that in the limit of infinite time, no infected population
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can persist, we can choose N to be the total population

S 0 + I0 + R0 = N = S∞ + R∞ (3.30)

and so obtain a transcendental equation for the recovered population at long

times.

R∞ = N − S 0e−
(R∞−R0)

µN (3.31)

Unlike the S ZR model, here we see that no matter how virulent the disease

is, the epidemic will be self-limiting, and there will always have some suscepti-

bles left at the end of the outbreak. This is a sharp qualitative difference between

zombies and more traditional S IR models, arising from the fact that the “recov-

ery” of zombies is itself dependent on the presence of susceptibles.

To visually compare the difference, in Figure 3.1 we have shown determin-

istic trajectories for both S IR and S ZR for selected parameter values.

3.3 Stochastic simulation

While most previous studies modeling zombie population dynamics have been

deterministic, things get more interesting when we try to model discrete pop-

ulations. By treating the number of zombies and humans as continuous vari-

ables in the last section, we are ignoring the random fluctuations that arise in

small populations: even a ferociously virulent zombie infestation might fortu-

itously be killed early on by happy accident. Similar problems arise in chemical

reactions: reactions involving two types of proteins in a cell can be described

by chemical reaction kinetics evolving their concentrations (like our S ZR equa-

tions 3.4), but if the number of such proteins is small, accurate predictions must
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Figure 3.1: Deterministic trajectories for the S IR and S ZR models with an ini-
tial population of 200 people, 199 uninfected and 1 infected. The
(susceptible, infected, removed) population is shown in (blue, red,
black) (color online). The S ZR results are solid lines while the S IR
results are lighter lines. For both models τ = tβN where N was taken
to be the total population. For the S ZR model α was chosen to be
0.6, while for the S IR model µ was chosen to be 0.6 to show similar
dynamics. Notice that in this case, in S ZR the human population dis-
appears and only zombies remain in the end, while the S IR model
is self-limiting, and only a fraction of the population ever becomes
infected.

simulate the individual binary reactions (each zombie battling each human).

Interpreting our S ZR transitions as reaction rates, gives us a system akin to a

chemical reaction with two possible transitions:

(S ,Z)
βS Z
−−−→ (Z,Z)

(S ,Z)
κS Z
−−−→ (S ,R)

When a human and zombie are in contact, the probability of a bite in a small

period of time is given by the bite rate and the size of the populations of the two
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Figure 3.2: Example Gillespie dynamics for the S IR and S ZR models with the
same parameter settings as Figure 3.1. The (susceptible, infected,
removed) population is shown in (blue, red, black) (color online).
The S ZR results are solid lines while the S IR results are lighter lines.
The two simulations were run with the same seed so as to match
their dynamics at early times.

species (βS Z dt), and similarly for the probability of a kill. In order to efficiently

simulate this dynamics, we use the Gillespie algorithm [29], which efficiently

uses the computer to sequentially calculate the result of each one-on-one battle.

The stochasticity gives more character to the simulation. The fully connected

continuous dynamics modeled by the differential equation is straightforward:

either the humans win and kill all of the zombies, or the zombies win and bite

all of the humans. While the continuous approximation may be appropriate

at intermediate stages of the infection where the total population is large and

there are a non-trivial number of infected individuals, we will eventually be

interested in simulating an actual outbreak on an inhomogeneous population

lattice, where every new site will start with a single infected individual. But
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even though we may be interested in modeling the outbreak case (α < 1), we

would like to allow the possibility that the humans manage to defeat the out-

break before it really takes off. The stochastic Gillespie dynamics allows for this

possibility.

In Figure 3.2 we have shown an example of a single stochastic simulation

using the same parameter settings as those used in Figure 3.1. The stochastic

trajectory overall tracks the analytic result, but at points in the simulation there

may be more or fewer zombies than anticipated if the dice fall that way.

Another implication of stochastic dynamics is that it is not always guar-

anteed that a supercritical (α < 1) outbreak will take over the entire suscepti-

ble population. For the parameter settings used in Figure 3.1 and 3.2, namely

α = 0.6 with a population of 200 and one infected individual to start, the zom-

bies win only 40% of the time. Additionally, the number of zombies we end

with is not fixed, as shown in Figure 3.3.

In fact, we can solve exactly for the probability Pext that an α < 1 simulation

will go extinct in the limit of large populations, using an argument drawn from

the theory of branching processes [113]. At the very beginning of the simulation,

there is only one zombie, who will be killed with probability κ/(β+ κ). If the first

zombie is killed before it bites anyone, we guarantee extinction. Otherwise, the

zombie will bite another human, at which point there will be two independent

zombie lines that need to be extinguished, which will occur with probability

P2
ext. This allows us to solve:

Pext =
κ

β + κ
1 +

β

β + κ
P2

ext (3.32)

Pext =
κ

β
= α . (3.33)
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Figure 3.3: Distribution for final zombies over 100,000 stochastic trajectories
with the same parameters as Figure 3.2. Not pictured are the 60%
of runs that end with no zombies in the final state. Compare these to
the analytical result, in which the final population of zombies would
be 81 with no possibility of surviving humans.

The probability of extinction is just given by our dimensionless inverse viru-

lence α. In Figure 3.4 we have shown the observed extinction probabilities for

1,000 Gillespie runs of a population of 104 individuals at various values of α,

and overlaid our expected dependence of α.

This same extinction probability (Pext = µ = R−1
0 ) is observed for the S IR

model [44]. This is not a coincidence. In precisely the limit that is important

for studying the probability of an extinction event, namely at early times with

very large populations, the S ZR model and S IR are effectively the same, since

the population of susceptibles (S ) is nearly constant. Writing S as S 0 − δS , we
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Figure 3.4: The observed fraction of simulations that end in an extinction for the
zombie outbreak, for 1,000 runs of 104 individuals at various values
of α (eqn. 3.33). The observed extinction probabilities agree with the
expectation that they should go as α, here shown as the dashed line.
This is the same behavior as the S IR model.

have:

dZ
dτ

= (1 − α)
S 0Z
N
− (1 − α)

(δS )Z
N

(3.34)

dI
dτ

=

(
1 −

µN
S 0

)
S 0I
N
− (µN + δS )

I
N
. (3.35)

Here as δS → 0, the two models are the same with α = µN/S 0, another indication

that the density dependent S IR model’s virulence is dependent on population

size.

To get a better sense of the effect of the stochasticity, we can look at the mean

fractional population in each state for various settings of α and choices for initial

population size. The results are shown in Figure 3.5.

Plotted are the fractional populations in the final state left for both the S ZR

model (top row) and S IR model (bottom row) for different parameter combina-
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Figure 3.5: Mean final states as a function of model parameters. One thousand
different simulations are run for each cell. Each simulation starts
with a single zombie or infected individual. The runs are run until
they naturally terminate, either because the susceptible population
is deleted, the zombie population is gone, or there are no more in-
fected individuals. Each cell is colored according to the mean frac-
tion of the population occurring in each state. The top row is for
S ZR simulations and the bottom row is for S IR simulations. In both
cases N is chosen to be 100. Here the sharp contrast between density-
dependent S ZR and S IR is made apparent. Notice that density-
dependent S IR is very strongly population dependent.
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tions of α and the initial population. In all cases, the N parameter was chosen

to be 100. For each box, 1,000 independently seeded stochastic trajectories were

calculated until completion. Looking at the S ZR results in the top row, we can

see that the dynamics is fairly independent of population size once the pop-

ulation size gets above around 100 individuals. The population dependence

for lower population sizes is an effect of the stochasticity. We can clearly see

a transition in the susceptible population near α = 1 corresponding to where

our continuous dynamics would show a sharp boundary. Here the boundary

is blurred, again due to the stochasticity. The final dead zombie population R

remains small for all values of α; for extremely virulent zombies α � 1, very

few will be killed by the humans before all of the humans are converted, while

in the other extreme few zombies are created so there are few to be killed.

Contrast these results with the density dependent S IR dynamics shown in

the second row. There can be no infected individuals left in the end, so only the

fraction of S and R in the final state are shown. The two transitions in S IR cou-

ple differently to the population of infected and susceptible. While our nondi-

mensionalized S ZR model has Z′ = (1 − α)S Z/N, our nondimensionlized S IR

has I′ = (S/N − µ)I. This creates a very strong population dependence. The

transition observed in the S population is largely independent of µ, except on

the very small end. When we move to inhomogeneous population lattices this

means that for the density dependent S IR model, the most important parameter

governing whether a particular site has a break-out infection is the population

of that site on the lattice.
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3.4 Critical Behavior of Lattice Model

Until now, we have considered fully connected, well-mixed populations, where

any infected individual can infect any susceptible individual with equal prob-

ability. But surely, a zombie in New York cannot bite someone in Los Angeles.

Investigation of the spatial spread of infectious diseases is an important appli-

cation of network science; social diseases spread among intimate contacts, Ebola

spreads by personal contact in a network of care-givers, influenza can be spread

by direct contact, through the air or by hand-to-mouth, hand-to-eye or hand-

to-nose contact after exposure to a contaminated surface. For most diseases,

‘long bonds’ dominate the propagation to distant sites [72]; airplane flights take

Ebola to new continents. Zombies do not fly airplanes, so our model is closer in

spirit to the spread of certain agricultural infestations, where the disease spreads

across a lattice of sites along the two-dimensional surface of the Earth (although

not in those cases where pathogens are transported long distances by atmo-

spheric currents).

To begin, we will consider a two-dimensional square lattice, where each site

contains a single individual. Each individual is allowed to be in one of three

states: S ,Z, or R. The infection spreads through nearest neighbor bonds only.

That is, a zombie can bite or be killed by any susceptible individuals in each of

the four neighboring sites.

To make direct contact with our zombie model, the rate at which an suscep-

tible cell is bitten is given by βZ where Z is the number of zombie neighbors

(since S is one), and the rate at which a zombie site is killed is κS where S is the

number of susceptible neighbors.

142



Because all state transitions in the S ZR model depend only on Z–S contacts,

for computational efficiency, we need only maintain a queue of all Z–S bonds,

that is connections along which a human and zombie can interact. At each step

of the simulation, one of these Z–S bonds is chosen at random, and with proba-

bility β/(β + κ) = 1/(1 + α), the human is bitten, marking it as a zombie. We can

then query its neighbors, and for all of them that are human, we can add a Z–S

link to our queue. With probability κ/(β + κ) = α/(1 + α) the zombie is killed,

removing any of its links to neighboring humans from the queue. This process

matches the stochastic dynamics of our zombie model operating on the lattice.

Simulating zombie outbreaks on fixed lattices, there is qualitatively different

behavior for small α and large α. When α is large, the zombies do not spread

very far, always being defeated by their neighboring humans. When α is very

small, the zombies seem to grow until they infect the entire lattice. This sug-

gests evidence of a phase transition. Technically, the presence of a phase tran-

sition would mean that if we could simulate our model on an infinite lattice,

there should be some critical α (αc), above which any outbreak will necessarily

terminate. Below the critical value, there is the possibility (assuming the infec-

tion does not die out) of having the infection grow without bound, infecting a

finite fraction of individuals in the limit that the lattice size becomes infinite.

The S IR model has been demonstrated to undergo such a phase transition, and

we expect the zombie model does as well.

The study of critical phenomena includes a series of techniques and analyses

that enable us to study the properties of phase transitions even on finite lat-

tices. A major theme of critical phase transitions is the importance of critical

points – where a system is tuned (here by varying α) to a value separating qual-
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itatively different behaviors (here separating low-infectivity transient zombie

infestations from a potentially world-spanning epidemic). At critical points, the

system can show scale free behavior; there is no natural length scale to the dynam-

ics, and various physical parameters will usually be governed by power laws (see

below).

With α chosen to be precisely at the critical value, we indeed see a giant

component with fractal structure (Fig. 3.6). Note that there are holes (surviving

pockets of humans) of all sizes in the figure. This reflects the proximity to the

threshold: the battle between zombies and humans is so evenly matched, that

one gets an emergent scale invariance in the survival patterns. This is in keep-

ing with studies of the S IR model, which shows a similar critical behavior and

phase transition [32].

Systems near critical points with this kind of scale invariance fall into uni-

versality classes. Different systems (say, a real disease outbreak and a simple

computational model) can in many ways act precisely the same on large scales

near their transitions (allowing us to predict behavior without knowing the

details of zombie-human (anti)social interactions). The S IR model on a two-

dimensional lattice with a single person per site falls into the percolation uni-

versality class [10], though details of its cluster growth can differ [104]. Given

that the S ZR model has two second order couplings, it is of interest whether it

falls into the same percolation universality class.

To extract the scaling behavior of our zombie infestation, we study the distri-

bution P(s, α), the probability that a single zombie will generate an outbreak of

size s at inverse virulence α. (An outbreak will be a fractal cluster in two dimen-

sions, with ragged boundaries if it dies out before reaching the entire world.) At
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Figure 3.6: Example cluster resulting from the single population per site square
lattice zombie model with periodic boundary conditions near the
critical point αc = 0.437344654(21) on a lattice of size 2048 × 2048.

α = αc where the zombies and humans are equally matched, we have an emer-

gent scale invariance. A large outbreak will appear to almost stop several times

– it can be viewed as a sequence of medium-sized outbreaks triggering one an-

other just before they die out. Medium-sized outbreaks are composed of small

outbreaks, which are in turn composed of tiny outbreaks. At threshold, each of

these scales (large, medium, small) is related to the lower scale (medium, small,

tiny) in the same fashion. Let us oversimplify to say that at criticality an out-

break of size Bs is formed by what would have been three smaller outbreaks of

size s which happened to trigger one another, and these in turn are formed by
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what would have been three outbreaks of size s/B. If the probabilities and form

of this mutual triggering is the same at each scale, then it would not surprise

us that many properties of the outbreaks would be the same, after rescaling the

sizes by a factor of B. In particular, we expect at the critical point to find the

probabilities of outbreaks of size s to be related to the probabilities at size s/B

by some factor f :

P(s, αc) = f P(s/B, αc). (3.36)

This formula quantifies an emergent scale invariance at αc: the properties of epi-

demics of size s (here the probability) are rescaled versions of the properties at

a smaller scale s/B. [91] – the system is self-similar to itself at different scales.

Eqn 3.36 is solved by P(s, αc) ∝ s−τ, with τ = log(1/ f )/ log(B). The distribution of

epidemic infection rates is a power law.

Figure 3.7 shows a thorough test of this dependence for our zombie model,

following a procedure akin to that of reference [104]. We simulated a zombie

outbreak on a two-dimensional lattice with periodic boundary conditions start-

ing with a single zombie. With the outbreak sizes following a power law dis-

tribution, the probability that a site belongs to a cluster of size ns is Ps = sns, so

that at the critical point Ps ∼ s1−τ. Integrating from s to ∞, the probability that

a point belongs to a cluster of at least s in size (P≥s) should at the critical point

itself follow a powerlaw: P≥s ∼ s2−τ. To find our critical point αc, we ran many

simulations until our integrated cluster size distribution followed a power law,

using the interpolation methods of reference [104] to get a precise estimate of

the critical point.

For zombies on a two dimensional lattice, this critical point occurs at αc =

0.437344654(21), the resulting integrated cluster size distribution is shown at the
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top of Fig. 3.7. Percolation theory predicts τ = 187/91 in two dimensions, and

we test that prediction in the bottom part of Fig. 3.7. Here, if we were precisely

at the critical point and the S ZR model is in the percolation universality class,

with infinite statistics we would have asymptotically a perfectly straight line.

Notice the small vertical scale: our fractional fluctuations are less than 0.1%,

while our experimental results vary over several order of magnitude. The clear

agreement convincingly shows that the zombie model on the two dimensional

lattice is in the percolation university class.

As an additional check, we computed the fractal dimension of our clusters

near the critical point using box counting, a distribution for which is shown in

Figure 3.8. We find a fractal dimension D = 1.8946(14), compared to the exact

percolation value of D = 91/48 = 1.895833.

Why did we need such an exhaustive test (many decades of scaling, many

digits in our estimate of αc)? On the one hand, a much smaller simulation could

have told us that there was emergent scale invariance and fractal behavior near

the transition; one or two decades of scaling should be convincing. But it turns

out that there are multiple different universality classes for this kind of invasion

process, and their exponents τ and D are rather similar. And a small error in αc

can produce large shifts in the resulting fits for τ and D – demanding efficient

programming and fast computers to achieve a definitive answer.

We conclude that the single person per site zombie infestation, near the criti-

cal virulence, will on long length scales develop spatial infestation patterns that

are well described by two-dimensional percolation theory.
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Figure 3.7: The cumulative distribution of epidemic sizes for the two dimen-
sional zombie model near the critical virulence. The critical point
found was αc = 0.437344654(21). The top plot shows the probability
of a site being in a cluster of at least s in size (P≥s). The fact that it
forms a straight line on a log-log plot indicates that P≥s is a power
law, and the slope is 2 − τ. For comparison, the red (color online)
line shows the powerlaw corresponding to the percolation critical
exponent: τ = 187/91. The bottom plot shows the same data times
sτ−2 using the exponent from percolation theory. The plot is very
nearly flat suggesting the percolation exponent accurately describes
the zombie model.
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Figure 3.8: A histogram of the observed fractal dimension of the zombie epi-
demic clusters as measured by box counting. These give a measured
value of D = 1.8946(14), consist with the exact percolation fractal
dimension of D = 91/48 = 1.895833.

3.5 US Scale Simulation of Zombie Outbreak

Having explored the general behavior of the zombie model analytically, stochas-

tically and on homogeneous single person lattices, we are prepared to simulate

a full scale zombie outbreak.

3.5.1 Inhomogeneous Population Lattice

We will attempt to simulate a zombie outbreak occurring in the United States.

This will be similar to our lattice simulation, but with an inhomogeneous pop-

ulation lattice. We based our lattice on code available for creating a “dot map”

based on the 2010 US Census data 3. The 2010 Census released census block
3https://github.com/meetar/dotmap
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level data, detailing the location and population of 11,155,486 different blocks

in the United States. To cast these blocks down to a square grid, we assigned

each of the 306,675,005 reported individuals a random location inside their cor-

responding census block, then gridded the population into a 1500 × 900 grid

based on latitude and longitude coordinates. The resulting population lattice

can be seen in the top half of Figure 3.9. You will see the presence of many

empty grids, especially throughout the western United States. This disconnects

the east and west coasts in a clearly artificial pattern – our zombies in practice

will gradually wander through the empty grid points. To add in lattice connec-

tivity, we did six iterations of binary closing (an image processing technique) on

the population lattice and added it to the original. The effect was to add a single

person to many vacant sites, taking our total population up to 307,407,336. The

resulting population map is shown in the bottom half of Figure 3.9. This grid

size corresponds to roughly 3 km square boxes. The most populated grid site is

downtown New York City, with 299,616 individuals. The mean population of

the occupied grid sites is 420, the median population of an occupied site is 13.

3.5.2 Augmented Model

In order to more ‘realistically’ simulate a zombie outbreak, we made two ad-

ditions to our simplified S ZR model. The first was to add a latent state E (Ex-

posed). The second was to introduce motion for the zombies. Considered as a
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Figure 3.9: A 1500×900 grid of the 2010 US Census Data. The above figure gives
the raw results. Notice the multitude of squares with no people in
them in the Western United States. The bottom figure shows the
resulting map after 6 steps of binary closing added to the original
population.
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system of differential equations, we now have:

Ṡ i = −βS iZi (3.37)

Ėi = −νEi (3.38)

Żi = νEi − κS iZi (3.39)

Ṙi = κS iZi (3.40)

Żi = µ
∑
〈 j〉

Z j − µZi (3.41)

or as a set of reactions:

(S i, Ei)
βS iZi
−−−−−→ (S i − 1, Ei + 1) (3.42)

(Zi, Ei)
νEi
−−−−−→ (Zi + 1, Ei − 1) (3.43)

(Zi,Ri)
κS iZi
−−−−−→ (Zi − 1,Ri + 1) (3.44)

〈i j〉 : (Zi,Z j)
µZi
−−−−−→ (Zi − 1,Z j + 1) . (3.45)

Here i denotes a particular site on our lattice. 〈 j〉 denotes a sum over nearest

neighbor sites, 〈i j〉 denotes that i and j are nearest neighbors. In this model,

zombies and humans only interact if they are at the same site, but the zombies

diffuse on the lattice, being allowed to move to a neighboring site with proba-

bility proportional to their population and some diffusion constant (µ). We as-

sume that the humans do not move, not only for computational efficiency, but

because, as we will see, the zombie outbreaks tend to happen rather quickly, and

we expect large transportation networks to shut down in the first days, pinning

most people to their homes. The addition of a latent state coincides with the

common depiction that once a human has been bitten, it typically takes some

amount of time before they die and reanimate as a zombie. If a human is bitten,

they transition to the E state, where at some constant rate (ν) they convert into

the zombie state.
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To choose our parameters we tried to reflect common depictions of zombies

in movies. The work of Witkowski and Blais [114] performed a Bayesian fit of

a very similar S ZR model to two films, Night of the Living Dead, and Shawn of

the Dead. In both cases, the observed α was very close to 0.8. This means that

the zombies in the films are 1.25 times more effective at biting humans than the

humans are at killing the zombies. We will adopt this value for our simulation.

For our latent state, we adopt a value close to that reported for Shawn of the Dead,

namely a half-life of 30 minutes. To set our movement parameter, we estimate

that zombies move at around 1 ft/sec. (Note that metric units are uniformly

used in science. We use the parochial US units of feet in homage to the popular

culture from which we draw our data.) To estimate the rate at which the zom-

bies will transition from one cell to the next, we assume that the zombies behave

like a random gas inside the cell, so that the probability that a zombie will cross

a cell boundary is roughly 1
4

Z
L2 Lv∆t, that is, one-fourth of the zombies within v∆t

of the edge will move across that edge in a small amount of time. This sug-

gests a value of µ of 0.0914 /hr. This corresponds to an average time between

transitions of around 11 hours, which for a zombie stumbling around a 3 km

block agrees with our intuitions. Finally, to set a rate for our bite parameter, we

similarly assume that the zombies are undergoing random motion inside the

cell at 1 ft/sec, and they interact with a human anytime they come within 100

feet. We can then estimate the rate at which humans and zombies will interact

as S Z Rv∆t
L2 , which corresponds to a choice of β of around 3.6 × 10−3 /hr. Another

way to make sense of these parameter choices is to ask how many susceptible

individuals must be in a cell before a single zombie has a higher rate for biting

a human than transitioning to a neighboring cell. For our choice of parameters,
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β 3.6 × 10−3 /hr/person
α 0.8
κ αβ

η 2 /hr
µ 0.0914 /hr

Table 3.1: The parameters chosen for our US-scale simulations of a zombie out-
break. These parameters were chosen to correspond with standard
depictions of zombies and simple physical estimations explained in
the main text.

this gives

Nβ = 4µ =⇒ N ∼ 102 . (3.46)

This corresponds to a low population density of ∼ 11 people/km2, again agree-

ing with our intuition. All of our parameter choices are summarized in Table

3.1.

3.5.3 Simulation Details

To effectively simulate an outbreak at this scale, we employed the Next Reac-

tion Method of [28]. We maintained a priority queue of all possible reactions,

assigning each the time at which the reaction would take place, an exponen-

tially distributed random number with scale set by the rate for the reaction. At

each time step of the simulation, we popped the next reaction off of the queue,

and updated the state of the relevant squares on our grid. Whenever popula-

tion counts changed, we of course needed to update the times for the reactions

that depend on those population counts. This method remained efficient for

simulating the entire US. However, at late times a large amount of simulation

time was spent simulating the diffusion of the zombies back and forth between
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highly populated states. We could have achieved additional computational ef-

ficiency by adopting the time dependent propensity function approach of Fu et

al. [27].

3.5.4 Results

With the simulation in place, we are now in a position to simulate a full scale

zombie outbreak. We first consider an outbreak that began with one in every

million individuals starting in the Exposed (E) state in the United States. For

a single instance the overall populations are shown in Figure 3.10. This looks

similar to the analytical outbreaks we saw in Figure 3.1, but with a steeper rate

of initial infection and some slight perturbations to the curves. The total popu-

lation curves however hide most of the interesting features. In Figure 3.11 we

attempt to give a sense of how this outbreak evolves, showing the state of the

United States at various times after the outbreak begins.

As you can see, for the parameters we chose, most of the United States pop-

ulation has been turned into zombies by the first week, while the geographic

map does not necessarily seem all that compelling. In the early stages of the

outbreak, while the population is roughly homogeneous, the zombie plague

spreads out in roughly uniform circles, where the speed of the infection is tied

to the local population density. Infestations on the coasts, with their higher pop-

ulation density, have spread farther than those near the center of the country.

After several weeks, the map exhibits stronger anisotropy, as we spread over

larger geographical areas and the zombie front is influenced by large inhomo-

geneities in population density. After four weeks, much of the United States has

155



Figure 3.10: The S (blue), Z (red), R (black), and E (green) populations as a
function of time for a full scale zombie outbreak in the continen-
tal United States starting with one in every million people infected
(color online). The exposed population (E) has been magnified by
a factor of 100.

fallen, but it takes a very long time for the zombies to diffuse and capture the

remaining portions of the United States. Even four months in, remote areas of

Montana and Nevada remain zombie free.

To investigate the geographical characteristics of the outbreak, we must

move beyond a single instance of an outbreak and study how different regions

are affected in an ensemble of outbreaks. If it takes a month to develop and

distribute an effective vaccine (or an effective strategy for zombie decapitation),

what regions should one locate the zombie-fighting headquarters? We ran 7,000

different 28-day zombie outbreaks in the continental United States starting with

a single individual. A single instance of one of these outbreaks originating in

New York City is shown in Figure 3.12.

By averaging over all of these runs, we can start to build a zombie danger

map, as shown in Figure 3.13. In the top plot, we show the probability that the

given cell is overrun by zombies after seven days. Here you can clearly see that
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(a) 1 Day (b) 2 Days

(c) 1 Week (d) 2 Weeks

(e) 3 Weeks (f) 4 Weeks

(g) 2 Months (h) 4 Months

Figure 3.11: Simulation of a zombie outbreak in the continental United States.
Initially one in every million individuals was infected at random.
Results are shown above at (a) one day, (b) two days, (c) one week,
(d) two weeks, (e) three weeks, (f) four weeks, and (g) two months
after the outbreak begins. Shown here are the population of suscep-
tible individuals (S ) in blue, scaled logarithmically, zombies in red
and removed in green (color online). All three channels are super-
imposed.
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Figure 3.12: Status of the United States 28 days after an outbreak that started in
New York City. Here blue represents humans, red represents zom-
bies and green represents dead zombies (color online). The three
color channels have been laid on top of one another.

there are certain regions – those surrounding populous metropolitan areas – that

are at a greater risk. This is partly because those regions have lots of individuals

who could potential serve as patient zero, and partly due to the rapid spread of

zombies in those areas. In the bottom plot, we plot the probability that the cell

is overrun, but at the 28 day mark.

After 28 days, it is not the largest metropolitan areas that suffer the greatest

risk, but the regions located between large metropolitan areas. For instance, in

California it is the region near Bakersfield in the San Joaquin Valley that is at

the greatest risk as this area will be overrun by zombies whether they originate

in the San Francisco area or the Los Angeles / San Diego area. The area with

the greatest one month zombie risk is north eastern Pennsylvania, itself being

susceptible to outbreaks originating in any of the large metropolitan areas on

the east coast.
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3.6 Conclusion

Zombies offer a fun framework for introducing many modern concepts from

epidemiology and critical phenomena. We have described and analyzed var-

ious zombie models, from one describing deterministic dynamics in a well-

mixed system to a full scale US epidemic. We have given a closed form an-

alytical solution to the well-mixed dynamic differential equation model. We

compared the stochastic dynamics to a comparable density-dependent S IR

model. We investigated the critical behavior of the single person per site two-

dimensional square lattice zombie model and demonstrated it is in the perco-

lation universality class. We ran full scale simulations of a zombie epidemic,

incorporating each human in the continental United States, and discussed the

geographical implications for survival.

While this work is predicated on a fictional infestation, one might ask

whether there are any phenomena in the real world that behave in a manner

similar to our modeled zombie outbreaks. As noted, the S ZR model requires

that susceptible hosts directly participate in the removal of zombie hosts from

the infectious population, leading to runaway outbreaks as susceptible hosts are

depleted. One might imagine a similar phenomenon for infectious diseases that

require medical intervention to be suppressed; as medical personnel themselves

become infected (as has sadly happened to a considerable degree during the re-

cent Ebola outbreak in West Africa), they become less able to stem the spread

of infection. (Medical personnel, however, represent only a small fraction of all

susceptible hosts, so a refinement to an S ZR-type model would be required to

account for this.) One might also imagine S ZR-like dynamics in the spread of

ideas and opinions: a person spreading a controversial opinion in a population,
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for example, might be able to sway some converts, but is also likely to meet

resistance and counter-arguments, which act to reduce infectivity and perhaps

ultimately stop the spread.

We hope our systematic treatment of an imaginary disease will provide a

useful and inspiring teaser for the exciting fields of statistical mechanics, net-

work science, and epidemiology.
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Figure 3.13: Average infection rate from US scale runs. In both cases, the plot
shows the probability of being infected in that square after an epi-
demic that originates from a single infected individual chosen at
random from the total population. The top figure is the probabil-
ity of being infected after 7 days, while the bottom plot is after 28
days. In total, this represents 7,000 simulated runs starting from a
single individual. The top plot represents the 1,467 outbreaks that
lasted at least 7 days, the bottom plot represents 1,458 outbreaks
that lasted at least 28 days.
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CHAPTER 4

GRAPHENE

Graphene is a unique material. As a stable two dimensional atomically

thin sheet with no real experimental evidence for the formation of defects, [25]

graphene is the perfect testbed for nonlinear elastic theory. Being atomically

thin, we must move beyond simple elastic theories that ignore rotation gradi-

ents, and being as strong as it is we can experimentally probe regions with high

strains. In this note we summarize some of our recent work towards that end.

First we summarize the usual approach to nonlinear elastic theory and intro-

duce some of its shortcomings. Then we introduce our approach to nonlinear

elastic theory, which will enable us to keep a clear picture of the symmetries

inherent in the problem. Next, by studying the symmetry of the problem in

depth with group theory, we can determine exactly which terms are allowed to

appear in a general free energy expansion. Our expansion will include not only

higher order terms in the strain, but also gradient terms and terms involving

optic-mode type rearrangements of our unit cells. We then measure the various

terms for a model interatomic potential. Finally we will end with a discussion of

future work: systematically integrating out the intra-lattice deformations, dis-

persion and strain gradients, application to other crystal symmetries, and a sys-

tematic tabulation of these constants for a variety of density functionals and
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interatomic potentials.

4.1 Theory

4.1.1 Traditional Approach

First, let’s review the usual approach one will find in classic elastic texts such as

Landau. [48, 112]

Usually, one imagines a material having undeformed coordinates x and de-

formed coordinates X. In this way, its motion is captured in its displacement

field ξ = X − x. All of the relevant physics of the material can be described by

its local changes in length inside the material. Originally distances are given by

ds2 = dxidxi , (4.1)

after deformation they are

dS 2 = dXidXi

= (dxi + dξi)(dxi + dξi)

= dxidxi + 2dxidξi + dξidξi

= ds2 + 2
∂ξi

∂xk
dxidxk +

∂ξi

∂xk

∂ξi

∂x j
dx jdxk

≡ ds2 + 2εi jdxidx j . (4.2)

Where we have defined the primary quantity of interest, the strain tensor

εi j =
1
2

(
∂ξi

∂x j
+
∂ξ j

∂xi

)
+

1
2

(
∂ξk

∂xi

∂ξk

∂x j

)
. (4.3)

This strain tensor gives us the local changes in length for the material, the quan-

tity of interest assuming that the material is made up of material that interacts
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locally. The second, nonlinear term in the definition of the strain tensor is the

geometric nonlinearity. This term is required to ensure that our measured length

changes agree in the case of rotations, but is often ignored given that it intro-

duces an essential nonlinearity in the theory.

From here, one assumes that a theory of the elastic response of a system

should depend on the strain tensor εi j and its powers, forming an energy func-

tional of the form:

E =

∫
dV Ci jklεi jεkl + Di jklmnεi jεklεmn + · · · . (4.4)

This expression can be simplified by making appeals to the symmetry of the ma-

terial in question. In particular, for the case of an isotropic material, the first term

in the energy function (quadratic in the strain tensor) can naturally only have

two independent components. Given that the strain tensor itself is manifestly

symmetric, the elastic moduli tensor C must be symmetric under interchange of

(i j)↔ (kl). Assuming the material is symmetric we can only contract with delta

functions, leaving only two terms that survive:

Ci jklεi jεkl → λe2
ii + µε2

i j . (4.5)

Similar symmetry arguments can be applied all the way down the chain, keep-

ing as many terms as desired in your energy functional.

4.1.2 Extent and Shortcomings

Usually, most people are content to stop with the quadratic term, ignoring the

geometric nonlinearity to give them linear elastic theory, which is quite easy to

solve problems in. This is naturally justified in the case of small strains. For

164



most materials we interact with, plastic flow tends to set in at strains of roughly

10−4. The linear elastic theory dominates in this regime, since the next nonlinear

term is suppressed by an additional 10−4. Why then would we be interested in

computing nonlinear extensions of elastic theory?

Besides the fact that a nonlinear theory will inherently be more accurate even

at low strains, if we want to describe the elastic environment near defects, a non-

linear theory is needed. On the scales of crystal defects, plastic deformation is

not possible, and yet the crystal has regions of high strain. If we were inter-

ested in accurately describing the strain field surrounding a vacancy or crack

tip, the details close to the defect core will have non trivial modifications due to

nonlinear terms.

Beyond including terms higher order in the strain itself, another tactic one

could employ to improve upon linear elastic theory is to include non-local con-

tributions to the elastic energy functional [82].

Once you begin to consider gradients, a more serious flaw to the traditional

approach shows its head: rotation gradients. This is particularly a problem for

thin sheets. Consider a sheet of paper. Now roll the paper up into a tube. Lo-

cally on the sheet, no stretching has been done, so the strain tensor will iden-

tically vanish, however we know that if you let go of the sheet it will unfurl.

Surely there is a contribution to the energy of the sheet that depends on how

much it is bent independent of in-plane stretching. Such terms go beyond the

purview of this paper, but will be discussed in Section 4.1.5.

To better appreciate the problem, and to see how to solve it, we’ll have to

rethink our description of elastic theory from the start.
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a0

Figure 4.1: The hexagonal lattice of graphene with its two different atoms
marked. Also marked is the lattice constant a0.

4.1.3 Embedding

For graphene, we shall use the more abstract formulation as the study of an

embedding of a 2D manifold in 3D space.

Instead of starting with the displacement field, forming the strain tensor and

examining powers of it, we instead shall consider elastic deformations not as a

transformation of the material in 3-space but as an embedding of an otherwise

perfect material in the lab frame. We will consider two distinct spaces: the pla-

tonic space, a 2D world in which a perfectly undeformed flat graphene sheet

lives, and the lab frame, a 3D world in which we study the twisted and de-

formed graphene sheet. Consider a perfect, infinite two dimensional graphene

sheet, as pictured in Figure 4.1. Now consider a mapping which takes our per-

fect two dimensional sheet and embeds it in the lab frame with some deforma-

tion, giving the lab coordinates in terms of the sheet coordinates. This mapping

Y(x, y) would give complete information about the current state of the sheet.

Given that graphene does not form a Bravais lattice, we need two different
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embedding functions, one for each of the atoms in a unit cell:

XIα = Y Iα(xi) (4.6)

I ∈ {X,Y,Z} i ∈ {x, y} α ∈ {A, B} (4.7)

one for the A type atoms (Y IA) and one for the B type atoms (Y IB). Where here

and throughout upper case Latin indices will mark indices in our lab frame,

lower case Latin indices will mark indices in our perfect undeformed two di-

mensional space and Greek indices will denote different atoms in the unit cell

(here called the A and B atoms).

Naturally these two embedding functions can be mapped to the average and

difference functions, here denoted Y and ∆.

Y I ≡
1
2

(
Y IA + Y IB

)
∆I ≡ Y IA − Y IB (4.8)

We can think of the average embedding Y as the deformation of the sheet the

graphene lives on, and the difference embedding function ∆ as describing mo-

tions of the atoms inside a unit cell.

The Jacobian of the average embedding gives us information about how dif-

ferentials on our sheet map under the deformation.

dXI =
∂Y I

∂xi dxi ≡ ∂iY Idxi ≡ Y I
/i dxi ≡ F I

idxi . (4.9)

This Jacobian F I
j is particularly useful. It is known as the deformation gradient.

In the equation above, I’ve included several different notations for the partial

derivatives.

Note that the deformation gradient is not a true tensor. It has two indices,

but one of these indices (I) lives in our 3D lab frame and the other ( j) lives on

167



our platonic 2D sheet. By keeping these two worlds separate and maintaining

some connection to our perfectly symmetric sheet, we facilitate the study of the

crystal symmetries.

We can connect this new way of thinking about the deformation of our sheet

with the traditional approach. Knowing how our differentials transform we can

measure distances in our original platonic frame, defining our metric on the

platonic coordinates. We start with distances as measured in the lab frame:

dS 2 = gIJdXIdXJ = gIJF I
jF

J
kdx jdxk , (4.10)

and write these in terms of the deformation gradient. We know that the metric

in our lab frame is the identity

gIJ = δIJ = gIJ . (4.11)

So naturally, this defines our metric tensor in terms of our platonic coordinates

dS 2 = g jkdx jdxk , (4.12)

g jk = Y I
/ j YI/k = F I

jFIk . (4.13)

Note that this metric is manifestly symmetric and positive definite. We can think

of the act of deformation as curving our two dimensional manifold. Notice also

that this is how the strain tensor is usually defined (compare Equation (4.2)):

dS 2 =
(
δi j + 2εi j

)
dxidx j (4.14)

We’ve finally identified a connection between the deformation gradient and the

strain tensor:

g jk = F I
jFIk = FT F = δ jk + 2εi j . (4.15)

This strain tensor (a 2 × 2 symmetric matrix) embodies the stretching and com-

pression of the 2D ideal graphene template, measured in the template’s coordi-

nate system.
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As a quick summary, while the embedding Y Iα contains complete informa-

tion about the deformation of our material, it has more information than we are

interested in. A more natural pair is the average and difference embeddings

(Y I ,∆I). Still Y I is a bit excessive. Y I contains an overall translation in the lab

frame that we don’t care about, so we are interested principally in gradients

of this Y , namely the deformation gradient F I
j , which will serve as one of the

principle components of our theory along with ∆I .

4.1.4 Model of Deformation

In order to get a better handle on this new approach to elastic theory, lets con-

sider a simple model where we assume a mostly trivial flat embedding of a

graphene sheet in the lab frame with a small perturbation on top. This will lead

to some simple expressions. Consider a deformation of the form:

Y I = Y0I + ηI (4.16)

= (x, y, 0) + (ξx, ξy, h) . (4.17)

The first term embeds our flat sheet in 3D, and the second term adds a small

in-plane (ξ) and out-of-plane (h) deformation. With this form of our embedding
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function, our deformation gradient simplifies to

F I
j = ∂ jY I (4.18)

= ∂ jY0I + ∂ jη
I (4.19)

= δI
j + ∂ jη

I (4.20)

=


1 0

0 1

0 0

 +


∂xξx ∂yξx

∂yξx ∂yξy

∂xh ∂yh

 . (4.21)

Here the first term is a near identity that transforms our 2D sheet onto the x-

y plane in the 3D lab coordinates, and the second is the Jacobian of the small

deformations. From here we can compute the strain tensor

F I
jFIi =

(
δI

i + ∂iη
I
) (
δI j + ∂iηI

)
(4.22)

= δi j +
(
∂iξ j + ∂ jξi

)
+

(
∂iξk∂ jξk

)
+

(
∂ih∂ jh

)
(4.23)

= δi j + 2εi j , (4.24)

or

εi j =
1
2


(
∂iξ j + ∂ jξi

)
+

(
∂iξk∂ jξk

)︸     ︷︷     ︸
geom

︸                               ︷︷                               ︸
2d strain

+
1
2
∂ih∂ jh . (4.25)

Here the term in square brackets is the strain you would expect for a two dimen-

sional material, with the second term in square brackets the geometric nonlin-

earity. The final term is the second order out of plane deformation contribution

to the strain tensor. We’ve managed to recreate the theory of thin sheets as a

natural result of thinking about the deformations of the sheet as an embedding

into the lab frame.

Having developed a better understanding of the deformation gradient, let’s

next consider a concrete example where it offers an advantage over thinking

170



directly in terms of the strain tensor.

4.1.5 Rotation Gradients

Imagine embedding a perfectly flat, rectangular section of graphene as a rolled

up tube. This can be accomplished with the embedding

Y I =

(
R sin

x
R
, y,R − R cos xR

)
, (4.26)

for which we have the deformation gradient

F I
j =


cos x

R 0

0 1

sin x
R 0

 . (4.27)

Contracting the transpose of F with itself gives

FT F = F I
i F I

j =

1 0

0 1

 , (4.28)

an identity. This leads to an identically vanishing strain tensor:

2εi j = F I
iFI j − δi j = δi j − δi j = 0 ! (4.29)

This agrees with our intuition. The metric of a smoothly rolled sheet is un-

changed.

If we had followed the usual approach to elastic theory, thinking only of

the strain tensor, our entire free energy would identically vanish for the curled

sheet. And yet, while the strain tensor vanishes, the deformation gradient does

not.
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We can even imagine terms in the free energy in terms of F that survive.

By taking gradients of the deformation gradient, we can see the effects of the

curvature of the sheet. For example,

∂iF Ii∂ jF
j

I =
1
R2 , (4.30)

is a term that is isotropic and so should appear in any elastic theory that includes

gradients of F, and yet does not vanish for the curled sheet. If this term entered

into the expression of our free energy, our sheet would resist curling, attempting

to maximize its radius of curvature.

Another way to think about this distinction is to perform a polar decom-

position on the deformation gradient itself. Thinking about the deformation

gradient as a matrix, we can perform a QR decomposition:

FI j = RIkski , (4.31)

writing F as a product of a orthogonal matrix R which behaves like a general-

ized rotation RT R = 1, and s, a rank 2 tensor corresponding to in-plane stretches.

In the current example, this decomposition would produce

F I
j =


cos x

R 0

0 1

sin x
R 1


1 0

0 1

 , (4.32)

since the act of rolling behaves as a pure rotation. In this picture it becomes clear

that the strain tensor, or products of the strain tensor, formed by contracting F

with its transpose, are always independent of this rotation (R)

FT F = sT RT Rs = sT s = 1 + 2ε . (4.33)

Such rotation gradient terms are usually omitted (perhaps for a good reason,

see section 4.1.5) for 3D elasticity. For the 3D deformations of 2D materials,
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they are usually introduced ‘by hand’. While incorporating rotation gradients

systematically provides a primary motivation for the work presented here, our

understanding of them remains incomplete (Section 4.1.5).

4.2 Group Theory

I’ll start with a very brief overview of group theory, for a more detailed intro-

duction see one of many books on the subject, including [49, 33, 106, 57]

4.2.1 Definitions

A group is a set along with an operator (G, ·) that satisfies the following axioms:

• Closure

∀a, b ∈ G : ab ∈ G

• Associativity

∀a, b, c ∈ G : a(bc) = (ab)c

• Identity

∃e ∈ G s.t. ∀a ∈ G : ae = ea = a

• Inverses

∀a ∈ G,∃a−1 ∈ G s.t. aa−1 = a−1a = e

The order of a group is the number of elements in the set.
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A class is an equivalency class on the elements of a group, whereby

a ∼ b i f ∃c s.t. a = cgc−1 . (4.34)

A representation is a mapping from group elements to matrices that preserve the

notation of the group action:

R : G → Mn,n s.t.∀a, b ∈ G,R(a)R(b) = R(ab) . (4.35)

Two representations are equivalent if they are related by a transformation

R1 = R2 ⇐⇒ ∃C s.t. ∀g ∈ G : R1(g) = CR2(g)C−1 . (4.36)

Notice that characters remain unchanged under such a transformation. A char-

acter is the trace of the representation of a group element

χ(g) = Rii(g) (4.37)

Notice also that all elements in the same class share characters.

The trivial representation of a group is to replace all elements of the group

by the number 1. The character for all elements in this representation is also 1.

We can combine groups to generate new ones. The direct product of two

groups is the set of tuples of elements of those groups. Given groups G,H we

can make up a group G ⊗ H where

∀g ∈ G, h ∈ H : (g, h) ∈ G ⊗ H , (4.38)

where we define multiplication to be elementwise

(g1, h1)(g2, h2) = (g1g2, h1h2) , (4.39)

this is a new group.
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There are also operations that we can do to representations to create new

ones. Trivially we could send it through an invertible transformation

R′ = CRC−1 (4.40)

but more interesting, we can form direct sums of representations, where we build

up a block matrix of individual representations along the diagonal. This will

still be a valid representation

R′ = R1 ⊕ R2 (4.41)

R′ =

R
1 0

0 R2

 (4.42)

Additionally, we can form the direct product of representations, wherein we

take the direct product of the matrices defining the representations. The charac-

ter of a direct product representation is the product of the characters.

A representation is reducible if it is equivalent (by an invertible transforma-

tion) to a direct sum of representations. A representation is irreducible if it is not

reducible.

Group theory is really interesting when you talk about irreducible represen-

tations. All kinds of results exist for them. Namely, there exists a super orthogo-

nality relation for irreducible representations.

∑
g

Rα
il(g)(Rβ

jm)∗(g) =
|G|
nα
δαβδi jδlm (4.43)

where |G| is the order of the group and nα is the dimensionality of the represen-

tation.

This implies that the number of distinct irreducible representations of a finite

group is finite. In particular, the number of nonequivalent irreducible represen-
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tations of a group must be equal to the number of classes in the group. A similar

orthogonality exists for characters

∑
g

χα(g)χβ∗(g) = |G|δαβ . (4.44)

These orthogonality relations enable us to decompose reducible representations

into direct sums of reducible ones.

4.2.2 Decomposition

Given the above, if one has the characters of a particular representation, it is easy

to compute how many times each irreducible representation appears, namely

aα =
1
|G|

∑
i

giXα∗
i χi , (4.45)

where here gi marks the count for the order of each class, as we decide to take

the sum over classes rather than group elements, χ the characters of our repre-

sentation and χα the characters of the irreducible representation.

A neat thing to know is that if you want to test whether a representation is

irreducible you can check to see if

∑
i

gi|χi|
2 = g , (4.46)

which is only true for irreducible representations. Another neat thing is

∑
i

χiχ
∗
i gi = g

∑
α

a2
α , (4.47)

of which the above is a special case.
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4.2.3 Linear Operators

As we do physics, often times we have a notion of how things transform in

terms of our symmetry operations. These notions can be extended to arbitrary

functions. That is, if we know how some x transforms under a group, we can

form a representation for how functions of x transform under the group. We

just define the function itself to be invariant in the proper way, that is:

ψ′(x′) = OTψ(x′) = ψ(x) i f x′ = T x . (4.48)

We can write this as

OTψ(T x) = ψ(x) . (4.49)

That is: the transformed function of the transformed coordinates is unchanged.

Or

OTψ(x) = ψ(T−1x) , (4.50)

which is just the above swapping x for T x.

So, just as we can decompose representations, we can decompose functions

into a sum of functions which act as a basis for the various irreducible represen-

tations:

ψ =
∑
α

∑
i

ψαi . (4.51)

We can decompose by the use of projection operators:

Pα =
nα
|G|

∑
g

χα∗(g)Og . (4.52)

Of particular interest to us is the projection into the trivial representation, for

which

P1 =
1
|G|

∑
g

Og . (4.53)
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4.3 Group Theory for Graphene

By thinking of the deformation of our graphene sheet as an embedding func-

tion, we have managed to keep clear which elements in our theory naturally

live in the three dimensional lab frame and which have their natural home on

the perfect two dimensional sheet of graphene that we started with. Given that

we have kept these two words separate, we can take full advantage of the sym-

metries of each to severely restrict the types of terms that might appear in our

free energy.

Consider the different kinds of symmetry transformations we can do to our

graphene sheet if we are sitting at a high symmetry point, such as the small

black dot in the center of a hexagon in Figure 4.1. We can:

1. Rotate the perfect sheet by multiplies of 60◦.

2. Reflect the perfect sheet about the horizontal mirror plane.

3. Reflect the sheet about the vertical mirror plane.

4. Rotate the embedded graphene by any angle in any direction in the lab

frame.

5. Invert the embedding in the lab frame. (i.e. Y → −Y).

It turns out this group is given by C6v⊗ I⊗S O(3), where C6v is the rotation group

with a 6-fold symmetry axis and an additional mirror symmetry (visualized in

Figure 4.2 below), I is the inversion group in three-space and S O(3) the special

orthogonal group of order three – the group of all 3D rotations. We’ll call this

product group (C6v ⊗ I ⊗ S O(3)), G for the graphene group.
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Figure 4.2: A representation of the group C6v, this object has the same symmetry
as a flat graphene sheet. Notice that the plate above is invariant to
any 60◦ rotation, as well as vertical or horizontal mirror planes.

I e i
A1 1 1
A1 1 -1

Table 4.1: The character table for the 2 element group, here used for the 3D spa-
tial inversions (I).

C6v e r3 r2(2) r(2) h(3) v(3)
A1 1 1 1 1 1 1

A2; z 1 1 1 1 -1 -1
B1 1 -1 1 -1 1 -1
B2 1 -1 1 -1 -1 1
E2 2 2 -1 -1 0 0

E1; x, y 2 -2 -1 1 0 0

Table 4.2: The character table for C6v the dihedral group of order 6, with all of
the transformations that leave a two dimensional sheet of graphene
invariant.

S O(3) E R(ϕ)

Ylm 2l + 1 sin[(l+ 1
2 )ϕ]

sin
(
φ
2

)
Table 4.3: The character table for S O(3) where the irreducible representations

are given by the spherical harmonics and the classes depend only on
the angle of rotation.
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C6v I S O(3)
e r3 r2(2) r(2) h(3) v(3) E I E R(ϕ)

Y Iα 2 0 2 0 2 0 1 -1 3 1 + 2 cosϕ
Y I 1 1 1 1 1 1 1 -1 3 1 + 2 cosϕ
∆I 1 -1 1 -1 1 -1 1 -1 3 1 + 2 cosϕ

∂i, xi 2 -2 -1 1 0 0 1 1 1 1
εi j 3 3 0 0 1 1 1 1 1 1
F I

j 2 -2 -1 1 0 0 1 -1 3 1 + 2 cosϕ

Table 4.4: The characters of some objects of interest under the components of the
graphene group.

Naturally to understand the nature of the graphene group, it helps to have

the character tables for its component groups, shown in Tables 4.1, 4.2 and 4.3.

Given that our graphene group is a direct product group, if we want to com-

pute the characters of a representation, it is enough to determine the characters

this representation has under each of the component groups themselves. I’ve

organized these characters below in Table 4.4

As an example, consider the bare, two-component embedding function Y Iα.

Under the C6v graphene operations, for those that take A atoms to A atoms and B

atoms to B atoms, namely the even rotations, it will have character 2, as it forms

a two dimensional representation on this subgroup and behaves like the identity

for those operations. Under inversion I it switches sign since the function itself

is a pair of two vectors in 3-space, and under rotations it rotates like an ordinary

vector.

Table 4.4 is central to our continuing analysis. It enables us to compute the

characters of any term we desire. Any candidate for the free energy expansion

can be written in terms of gradients (∂i), F, ∆ and ε. Since we’ve computed the

characters of each of these in Table 4.4, and since a direct product of representa-
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tions has the character of the product of the characters of those representations,

it is easy to compute the character of any candidate we wish. Once we know

that character of a representation, it is easy to decompose that representation

in terms of irreducible representations of our group. We are interested in par-

ticular in how many scalars can appear in these representations. To determine

how many scalars appear in a representation, we need only sum the character

of the representation for each column in Table 4.4, weighted by the number of

elements in that class and divide by the order of our group. In the case of the

columns corresponding to the rotation group, the sum is replaced by an integral

weighted by the density of rotations.

Notice also that we can see by Table 4.4 that in terms of representations Y Iα =

Y I ⊕ ∆I , the two component embedding function is the direct sum of its average

and difference functions. This is not a surprise but it is nice to know that we

could have discovered that taking the sum and difference of the embedding

function was the right thing to do from the group theory alone.

The only remaining issue is that often times we want not the direct prod-

uct representation of an element from Table 4.4, but a symmetric direct product.

Consider for instance a term in the free energy involving two powers of epsilon

(εi jεkl). This term is manifestly invariant under the transformation (i, j) ↔ (k, l),

and so its character is not given by the products of the characters of the repre-

sentation of ε directly.
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4.3.1 Symmetric Products

In order to determine which terms are allowed to appear, we need to figure out

the characters for all of the possible products we want to consider. While deter-

mining the characters of these terms, it is not enough to just take the products

of the characters. While that works for determining the characters for a direct

product representation, we are interested in symmetric direct products.

There is a difference between the outer product of two different vectors and

the outer product of the same vector with itself.

vi ⊗ w j , (4.54)

has as its character the vector representation’s character squared, while

vi ⊗ v j , (4.55)

is different. We need it to be manifestly symmetric on the two indices.

We need a way to compute the character for a general symmetric product of

representations [49]. I found the formula to do so. It is recursive:

χ(R){n} = Z(S n) (4.56)

with

Z(S 0) = 1 Z(S n) =
1
n

n∑
l=1

χ
(
Rl

)
Z(S n−l) . (4.57)

For illustration, here are the first few terms

χ(R){1} = χ(R) (4.58)

χ(R){2} =
1
2

(
χ2(R) + χ

(
R2

))
(4.59)

χ(R){3} =
1
6

(
χ3(R) + 3χ(R)χ

(
R2

)
+ 2χ

(
R3

))
(4.60)

χ(R){4} =
1

24

(
χ4(R) + 6χ2(R)χ

(
R2

)
+ 3χ2

(
R2

)
+ 8χ(R)χ

(
R3

)
+ 6χ

(
R4

))
. (4.61)
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Notice that this recursive formula allows us to calculate the characters for

a symmetric direct product of a representation with itself, but it relies on the

ability to calculate the characters of the product of the representation elements

themselves.

4.3.2 Representation of the Graphene Group

For our graphene group, we can give an explicit representation for a vector from

our platonic realm for a single element from each class of our group:

R(e) =


1 0 0

0 1 0

0 0 1

 (4.62)

R(r) =
1
2


1 −

√
3 0

√
3 1 0

0 0 1

 R(r2) =
1
2


−1 −

√
3 0

√
3 −1 0

0 0 1

 (4.63)

R(r3) =


−1 0 0

0 −1 0

0 0 1

 R(h) =


−1 0 0

0 1 0

0 0 1

 (4.64)

R(v) =


1 0 0

0 −1 0

0 0 1

 R(I) =


−1 0 0

0 −1 0

0 0 −1

 (4.65)

This enables the construction of the character table (Table 4.4), well this with
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a representation for a vector in S O(3):

R(R(φ)) =


cos φ − sin φ 0

sin φ cos φ 0

0 0 1

 . (4.66)

Although we should note, for the elements of S O(3) we have a closed form

expression for the form of the character of the product of the representation.

χ
(
R(φ)k

)
= 1 + 2 cos kφ . (4.67)

I should also mention that our notion of orthogonality is modified for S O(3),

given that it is a Lie Group, and thus continuous. Instead of summing over all of

the group elements, we must perform an integral over the governing parameter

for the character. We also require a proper measure on the space. For S O(3),

orthogonality is defined by:

1
π

∫ π

0
dφ (1 − cos φ)χα∗(φ)χβ(φ) = δαβ . (4.68)

4.4 Free Energy Expansion

In considering the most general form of the free energy, the following elements

are allowed to appear:

εi j, ∂kF I
j,∆I , (4.69)

along with any combination or gradient therein. Here ε is the strain tensor, ∆I

the difference embedding and ∂kF I
j a gradient of the deformation tensor. The

gradient ensures that we are dealing with a small quantity. Since F I
j itself is not

small, so we cannot let it alone appear in the expansion unless it is accompanied

by another small term. In fact, if we estimate the magnitude of our deformation
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takes with some characteristic scale A, and that it varies over some characteristic

length σ, and that the ∆ fluctuations have some size ∆, we can form order of

magnitude estimates of the magnitude of the contribution of any term as:

F I
i ∼ 1 εi j ∼

A
σ

∆I ∼ ∆ ∂i ∼
1
σ
, (4.70)

and do a three length scale expansion in the limit that A,∆ are small and σ is

large. Each term then has a leading order contribution and we can expand in

terms of powers of these small parameters.

Finding potential terms for the free energy allowed by symmetry is made

easier by the presence of irreducible invariants. We are used to only being al-

lowed to contract tensors in physics with δi j and εi jk. Why is that? Those tensors

are irreducible invariants for the rotation group SO(3). Actually εi jk behaves as a

pseudoscalar, and so unless we contract an element that also switches sign un-

der inversion, it is only allowed by itself in pairs. For the graphene group, we

will similarly have δi j and εi jk as potential irreducible invariants, but additional

ones show up because of the reduced symmetry. We don’t know of a systematic

way to find these irreducible tensors ourselves, but we have found a pseudo

scalar rank three tensor Ti jk (Triangular) and a fully symmetric rank six tensor

Hi jklmn = Ti jkTlmn (Hexagonal). We also have evidence of the existence of an inde-

pendent irreducible invariant of rank 5: Pi jklm (Pentagonal), again with pseudo

scalar characteristics. Explicitly, T takes the form:

Ti jk =



−1 0

0 1

0 1

1 0




, (4.71)

and has a pseudo scalar like transformation structure, which enables it to form
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completely invariant terms when combined with a single ∆I and another rank

two object.

We can begin to enumerate all possible terms that are allowed to appear in

the free energy. For any possible combination of elements

(
εi j

)α
(∂k)β

(
F I

j

)γ (
∆I

)δ
(4.72)

we can immediately compute the character as the direct product of the sym-

metric direct products of each of the representations in our term. Knowing the

character, we can immediately calculate its projection onto the trivial represen-

tation to obtain a count of how many independent scalar representations the

term contains. After that, things get a little more complicated. Finding an ex-

plicit basis for those scalar terms demands a bit of artistry. We are guided by the

existence of our irreducible invariants, but subtleties quickly emerge. For one,

there are nontrivial equivalences that can come out, wherein terms that appear

to be different are actually linearly dependent. Furthermore, our group theo-

retic calculation can only tell us how many gradients might appear, it doesn’t

help us resolve the orderings of those gradients in the scales A, σ and ∆ (eqn.

4.70). Since the gradient is an operator, there is an additional calculation that

must be done to resolve how many independent terms we can produce. Here

too there will be nontrivial linear dependencies, due in large part to boundary

terms, which may or may not vanish upon integration by parts, depending on

our particular configuration. Gradients also have hidden symmetries associ-

ated with the symmetry of repeated gradients acting on the same object. We

know that second partial derivatives must be symmetric, but our group the-

ory doesn’t know about this symmetry directly, as the group theory analysis is

operator-ordering dependent.
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4.4.1 Determining the Number of Scalars

Let’s work an illustrative example. Let’s try to determine the number of scalars

that can appear in a term of the form εi j, which itself is a shorthand for a rep-

resentation of the form xix j, that is a symmetric product of two 2D vector rep-

resentations. Let’s assume we do not yet know the representation for εi j; how

would be find it in terms of our explicit representation of the elements of our

group in Section 4.3.2?

We are interested in the symmetric direct product of the 2D xi representation

with itself. First we recreate the line in the character table corresponding to our

two dimensional vector by taking the traces of each of the representative class

members. We find:

χ(R) = {2,−2,−1, 1, 0, 0, 2,−2,−1, 1, 0, 0}1 . (4.73)

Remember that the character table was actually shorthand for a larger direct

product group. This means that to represent the characters for each class in

our product group requires a 6 × 2 × f dimensional vector, where f denotes the

function for the character of the S O(3) group.

We also need the characters for the squares of all of our representation ma-

trices, for which we find:

χ(R2) = {2, 2,−1,−1, 2, 2, 2, 2,−1,−1, 2, 2, 2, 2}1 . (4.74)

Notice that this corresponds to the εi j row of our character table 4.4. The repre-

sentation for the symmetric direct product of this two dimensional representa-

tion with itself is therefore 4.57:

χ(R){2} =
1
2

(
χ(R)2 + χ(R2)

)
= {2, 0,−1, 0, 1, 1, 2, 0,−1, 0, 1, 1}1 . (4.75)
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To determine the number of scalars present in this term, we need only de-

termine the number of times the trivial representation appears in this represen-

tation. We can do this by utilizing the orthogonality theorem and taking the

proper dot product of our characters with the corresponding characters for the

trivial representation:

χ0 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}1 . (4.76)

In order to properly weight the order of each class, and account for the 1
g in

the orthogonality relation, we can directly compute the number of scalars by

computing:

〈0 | R〉 =
1

24π

∫ π

0
(1 − cos φ){1, 1, 2, 2, 3, 3, 1, 1, 2, 2, 3, 3} · χ(R) . (4.77)

For our particular case this yields simply: 1. There is only a single scalar possible

for a term of the form εi j, as we might have expected.

By this same procedure, we can determine the number of scalars possibly

present in any general term.

4.5 Free Energy Terms

Here I’ll report the independent terms I’ve found in the free energy up to fourth

order in our small terms (A, ε,∆, 4.70), without considering gradients. For each,

I’ll give the explicit contraction as well as a shorthand name for use in referring

to terms in the results table.
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4.5.1 First Order Terms

The only first order term allowed by symmetry is the trace of the strain tensor:

εii ≡ ε (4.78)

formed from the strain, contracted against δi j. This couples to an overall pres-

sure in our system.

4.5.2 Second Order Terms

Things are more interesting at second order. I’ve found that the following terms

are independent and span the space:

εiiε j j ≡ ε
2 (4.79)

εi jεi j ≡ ε
2
i j (4.80)

Ti jkF I
i ∆

Iε jk ≡ T F∆ε (4.81)

∆I∆I ≡ ∆2 (4.82)

F I
i ∆

IF J
i ∆J ≡ (F∆)2 (4.83)

You’ll notice the presence of the two ordinary linear elastic theory terms

(ε2, ε2
i j). These would be present in a completely isotropic theory. But you’ll

also notice additional terms that should contribute at roughly this order, in-

cluding terms both linear and quadratic in ∆, which are due to the fact that that

graphene need not necessarily satisfy the Cauchy-Born rule [12].
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4.5.3 Third Order Terms

εiiε j jεkk ≡ ε
3 (4.84)

εi jε jkεki ≡ εi jε jkεki (4.85)

Ti jkTlmnεi jεklεmn ≡ TT (εεε) (4.86)

∆I∆Iεii ≡ ∆2ε (4.87)

Ti jkF I
i ∆

IF J
j ∆

JFK
k ∆K ≡ T (F∆)3 (4.88)

F I
i ∆

IF J
j ∆

Jεi j ≡ (F∆)2
i jεi j (4.89)

F i
i∆

IF J
i ∆Jεkk ≡ (F∆)2ε (4.90)

Ti jkF I
i ∆

Iε jkεll ≡ T (F∆ε)ε (4.91)

T jklF I
i ∆

Iεi jεkl ≡ (F∆)T (εεε) (4.92)

Here we see the fist appearance of a term that would show up in traditional

elastic theory but not for an isotropic theory TT (εεε) = H(εεε). This term is due

to the reduced symmetry of the 6-fold rotation axis.

The third order terms also help illustrate how difficult finding these indepen-

dent scalars can be. Group theory tells us that there should be three independent

scalars formed from contractions of the form εi jεklεmn. Naively, we would expect

these to be:

εiiε j jεkk (4.93)

εi jε jkεki (4.94)

εi jεi jεkk . (4.95)

However, it turns out that the last term εi jεi jεkk is actually a linear combination

of the first two because of a peculiarity of two dimensions. We realized these
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terms were linearly dependent after attempting to fit the coefficients and dis-

covering a singularity in the design matrix for the fit. Indeed, singularities in

the design matrix has generally been a useful diagnostic for unexpected linear

dependencies.

Just as group theory allows us to determine the number of scalars present in

any particular term, we can also explicitly construct the projection of that scalar

representation. This is expressed as a large, sparse matrix of weights when ren-

dered as an explicit representation. For the case of εi jεklεmn in particular, this is a

26 = 64 dimensional representation. Projecting out the components correspond-

ing to ε3
ii and εi jε jkεki exposed a linear subspace involving our invariant rank 6

tensor Hi jklmn. One can show that the completely symmetric tensor H factors into

the product of two rank 3 pseudo invariant tensors Ti jkTlmn.
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4.5.4 Fourth Order Terms

εiiε j jεkkεll ≡ ε
4 (4.96)

εi jε jkεklεli ≡ εi jε jkεklεli (4.97)

εi jεi jεkkεll ≡ ε
2
i jε

2 (4.98)

Ti jkTlmnεi jεklεmnεpp ≡ TT (εεεε) (4.99)

∆I∆I∆J∆J ≡ ∆4 (4.100)

F I
i ∆

IF J
i ∆JFK

j ∆KFL
j ∆

L ≡ (F∆)4 (4.101)

∆I∆Iεiiε j j ≡ ∆2ε2 (4.102)

∆I∆Iεi jεi j ≡ ∆2ε2
i j (4.103)

Ti jkεi jFkI∆
I∆J∆J ≡ T (εF∆)∆2 (4.104)

F I
i ∆

IF J
i ∆J∆K∆K ≡ (F∆)2∆2 (4.105)

Ti jkF I
i ∆

IF J
j ∆

JFK
k ∆Kεll ≡ T (F∆)3ε (4.106)

Ti jkF I
i ∆

Iε jkFL
l ∆LFM

l ∆M ≡ T (F∆ε)(F∆)2 (4.107)

Ti jkF I
i ∆

Iε jkεllεmm ≡ T (F∆ε)ε2 (4.108)

Ti jkF I
i ∆

Iε jkεlmεml ≡ T (F∆ε)ε2
i j (4.109)

Ti jkTlmnF I
i ∆

IF J
j ∆

Jεklεmn ≡ (F∆ε)T ε(ε) (4.110)

F I
i ∆

IF J
i ∆Jεkkεll ≡ TT ((F∆)(F∆)εε) (4.111)

F I
i ∆

IF J
i ∆Jεklεlk ≡ (F∆)2ε2

i j (4.112)

F I
i ∆

Iεi jF J
j ∆

Jεkk ≡ (F∆)iεi j(F∆) j (4.113)
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4.5.5 Fifth and Higher Order Terms

The following fifth and higher-order terms are included in the fits that follow.

They are linearly independent, but are not exhaustive or systematically chosen.

They were included to help resolve the fits for some lower order terms, where

these terms are natural extensions of some previous terms.

εii∆
J∆J∆K∆K ≡ ∆4ε (4.114)

Ti jkF I
i ∆

I∆J∆Jε jkεll ≡ (F∆)T (ε)∆2ε (4.115)

T jklF I
i ∆

I∆J∆Jεi jεkl ≡ (F∆ε)T (ε)∆2 (4.116)

Ti jkF I
i ∆

IF J
j ∆

JFK
k ∆K∆L∆L ≡ T (F∆)3∆2 (4.117)

F I
i ∆

IF J
i ∆Jε j j∆

K∆K ≡ (F∆)2ε∆2 (4.118)

F I
i ∆

IF J
j ∆

Jεi j∆
K∆K ≡ (F∆)ε(F∆)∆2 (4.119)

F I
i ∆

IF J
i ∆J∆K∆K∆L∆L ≡ (F∆)2∆4 (4.120)

Ti jkF I
i ∆

Iε jk∆
J∆J∆K∆K ≡ (F∆)T (ε)∆4 (4.121)

εiiε j j∆
J∆J∆K∆K ≡ ε2∆4 (4.122)

εi jε ji∆
J∆J∆K∆K ≡ ε2

i j∆
4 (4.123)

∆I∆Iεiiε j jεkkεll ≡ ∆2ε4 (4.124)

∆I∆Iεi jε jkεklεli ≡ ∆2εi jε jkεklεli (4.125)

∆I∆Iεi jε jiεkkεmm ≡ ∆2ε2
i jε

2 (4.126)

∆I∆ITi jkTlmnεi jεklεmnεpp ≡ ∆2TT (εεεε) (4.127)

εii∆
J∆J∆K∆K∆L∆L ≡ ∆6ε (4.128)
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4.6 Simulation

In order to estimate the value for the elastic constants in the expansion in Section

4.4, I deform graphene sheets and measure the forces according to available

potentials.

The largest fit I attempted with some success was one involving all of the

terms reported above. Each term came in linearly with an unknown elastic con-

stant. I randomly strained an armchair unit cell graphene sheet, and extracted

the potential energy from a simulation with the Airebo potential [100] imple-

mented in LAMMPS [81] with the python package ase (Atomic Simulation En-

vironment) [4].

Below in Table 4.5 I show the resulting fitted values for all of the first 50

elastic constants. Table 4.6 has the extracted elastic constants in terms of our

expansion. Figure 4.3 shows both the simulation and fitted energies across all

configurations, as well as the residuals. The residuals are a part in 105 of the

energy of the system, giving us a high degree of confidence that I’ve managed

to capture all of the relevant terms up to fourth order in the energy.
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id term value (TPa)
0 c −1.485021(2) × 101

1 ε −1.0(6) × 10−4

2 ε2 3.78(7) × 100

3 ε2
i j 2.787(9) × 101

4 T F∆ε 2.63(1) × 101

5 ∆I ∆I 1.2(2) × 100

6 (F∆)2 1.59(2) × 101

7 ε3 −1.25(5) × 101

8 εi jε jkεki −1.13(1) × 102

9 TT (εεε) −5.7(1) × 100

10 ∆2ε −5.9(9) × 100

11 T (F∆)3 −6.4(6) × 101

12 (F∆)2
i jεi j −5.6(7) × 101

13 (F∆)2ε −7.4(8) × 101

14 T (F∆ε)ε −8.6(6) × 101

15 (F∆)T (εε) −2.33(6) × 102

16 ε4 8.2(2) × 102

17 εi jε jkεklεli 1.6(2) × 103

18 ε2
i jε

2 −1.9(4) × 103

19 TT (εεεε) 1.4(1) × 102

20 ∆4 1.7(3) × 102

21 (F∆)4 4.7(5) × 102

22 ∆2ε2 −4.5(6) × 102

23 ∆2ε2
i j 1.2(8) × 103

24 T (εF∆)∆2) −4.3(8) × 102

25 (F∆)2∆2 1.3(8) × 103

26 T (F∆)3ε 4.0(2) × 102

27 T (F∆ε)(F∆)2 −1.3(6) × 103

28 T (F∆ε)ε2 1.5(2) × 102

29 T (F∆ε)ε2
i j −1.1(1) × 103

30 (F∆ε)T ε(ε) 1.9(2) × 103

31 TT ((F∆)(F∆)εε) 2.3(2) × 103

32 (F∆)2ε2 −7.5(3) × 102

33 (F∆)2ε2
i j 2.0(3) × 103

34 (F∆)iεi j(F∆) jε −2.3(3) × 102

35 ∆4ε 4.2(4) × 104

36 (F∆)T (ε)∆2ε 1.5(2) × 104

37 (F∆ε)T (ε)∆2 −3.5(2) × 104

38 T (F∆)3∆2 2.5(1) × 104

39 (F∆)2ε∆2 −2.5(2) × 104

40 (F∆)ε(F∆)∆2 3.5(2) × 104

41 (F∆)2∆4 −1.6(7) × 106

42 (F∆)T (ε)∆4 5(116) × 104

43 ε2∆4 8.7(1) × 105

44 ε2
i j∆

4 −9(12) × 105

45 ∆2ε4 −1.2(1) × 106

46 ∆2εi jε jkεklεli −2.3(1) × 106

47 ∆2ε2
i jε

2 2.8(2) × 106

48 ∆2TT (εεεε) −1.7(8) × 106

49 ∆6ε −5.4(4) × 107

Table 4.5: The results of a fit for the 50 terms in the free energy over 120 in-
stances, applying a random strain of order 10−2. Note that the result-
ing energy expression fits each data point to within 10−5. Note, how-
ever that some high order terms (e.g. #42) are not well determined.
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constant value (TPa)
λ 0.61(1)
µ 2.24(1)
K 0.84(1)
E 0.792(5)
ν 0.107(2)

Table 4.6: The Elastic constants extracted from the fit for the Airebo potential.

Figure 4.3: The simulated and fit values for the energy across all tested con-
figurations, as well as the measured residuals. Notice that the fit is
accurate to a part in 105 giving us confidence that we have captured
all of the relevant terms up to fourth order.
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4.7 Adding Dispersion

So far, we’ve ignored the possible gradient terms in our free energy expansion.

Such terms describe dispersion (the wavelength-dependence of the sound ve-

locity), and also the large strain gradients associated with crystalline defects.

Dispersion introduces significant complications.

Let’s consider adding terms formed as contractions of the following:

∂iF I
j∂kF J

l . (4.129)

First, since we are trying to describe a free energy, our free energy is unique

only up to the inclusion of a total derivative term, which will only contribute at

the boundary. Assuming we don’t have anything interesting happening at the

boundary, this allows us to move around the partial derivatives as allowed by

integration by parts. At present this would suggest this term is equivalent to

F I
i ∂ j∂kF J

l , (4.130)

where both of the partial derivatives act on the same instance of F. Now, we

have an additional symmetry not necessarily incorporated into our group the-

oretic description thus far: that second partial derivatives must be symmetric

under interchange.

For this term, we can now ask how many scalars should be present. Treating

this as a representation formed from the symmetric direct product of the 2D

vector representation for the partials, and the symmetric direct product of the

representation of F, we find that there should be 2 independent terms. Intuition
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would suggest these are the contractions:

∂iF I
i ∂ jF I

j (4.131)

∂iF I
j∂iF I

j . (4.132)

But we could also imagine orderings such as

∂i∂ j

(
F I

i F I
j

)
= ∂i∂ jεi j (4.133)

∂i∂i

(
F I

jF
I
j

)
= ∂i∂iε j j , (4.134)

for which the partial derivatives will strip out the constant contribution and

leave us with a higher order term, but still seemingly allowed. However, these

terms are total derivatives, and so would contribute only on the boundary. Thus

4.131 could be a topological invariant – not ignorable, but whose contribution is

wholly dependent on boundary conditions, independent of the bulk.

Things are further muddied by nontrivial dependencies in these gradient

terms. For instance, if one ignores the geometric nonlinearity, one can demon-

strate [1, 97] that,

∇ × ε × ∇ = 0 (4.135)

εipmε jqn∂p∂qεmn = 0 (4.136)

∂k∂lεi j + ∂ j∂ jεkl − ∂ j∂kεil − ∂i∂lε jk = 0 (4.137)

These three expressions are equivalent. This can be shown directly by substitut-

ing in εi j = 1
2

(
∂iξ j + ∂ jξi

)
and simplifying. This result comes as a nontrivial con-

sequence of the fact that our strains are not allowed to be arbitrary, but instead

must be admissible in terms of some actual displacement field. Even worse,

this result is used to prove in some accounts that the displacement field can be

derived from the strain field itself.

ξi(x) =

∫ x

x0

dη j

[
εi j(zi) + (xk − ηk)

(
∂kεi j(η) − ∂iεk j(η)

)]
+ wi (4.138)
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where wi represents the contribution of a rigid body motion. Results such as

these seem to suggest that no gradients of F should survive, as all of them

should be representable as various terms involving ε. Indeed, preliminary work

does indicate that, at least ignoring the geometric nonlinearity, F I
i ∂i∂ jF I

j is not

independent of higher order ε terms. However, as we discuss in Section 4.1.5,

∂iF I
i ∂ jF I

j is non-zero for a cylindrical graphene nanotube, with ε = 0, so defi-

nitely cannot be written in terms of gradients of ε. It has been suggested to us

that the importance of rotation gradients for 2D membranes in 3D may be re-

lated to the need for both the first and second fundamental forms to characterize

the embedding; only the first fundamental form (strain) is apparently needed to

describe 3D embeddings into 3D.

Between the complicated combinatorics involved in the non-commuting na-

ture of the gradients and the nontrivial effect that has on our group theoretic

description, the extra symmetries that multiple gradients introduce, and these

potential nontrivial relationships between gradients of F and terms involving

ε, we have not yet satisfactorily built up a machinery capable of generating lin-

early independent gradient terms in the expansion of the free energy.

We speculate that restructuring our approach in the language of Clifford Al-

gebra [37, 19, 58, 5] might help sort out some of these difficulties. In particular,

the conformal geometric algebra [37, 38] contains both translations and rotations

as elements of the same algebra as the geometric entities themselves. Restoring

the symmetry between translation and rotation might help resolve some of the

difficulties introduced by their current split. Such an approach also offers the

potential of incorporating not just the point group symmetries of the graphene

lattice, but its translational symmetries as well.
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Introducing gradient terms, will also complicate our numerical analysis. We

can no longer simulate simple strains on unit cells. Instead we must apply spa-

tially dependent perturbations to a larger lattice, such as the one depicted below

in Figure 4.4. The general approach is to start with a flat graphene sheet and put

on a Gaussian random initial displacement field to give smooth deformation

field in which one can control both the magnitude of the deformation as well as

its characteristic wavelength. A proper analysis could extend our fits beyond

considering the energy alone to fitting the forces on each atom as well. Know-

ing the displacements enforced on the sheet, the calculation of the forces from

the free energy is straightforward. Estimating the elastic constants amounts to

doing a linear least squares fit for the coefficients relating the predicted forces

of each term with the observed forces due to the interatomic potential used.

4.8 Extensions and Discussion

We’ve managed to build a procedure for creating general non-linear elastic the-

ories for materials, using as input only the symmetry properties of the material

itself. This creates a rich starting ground for several interesting calculations.

This project is in many ways still in its infancy. There is much work left to be

done. Below is a taste of the types of things that should be done, and the direc-

tions we might be able to pursue if the project is continued.

200



Figure 4.4: An example Gaussian random initial configuration for the displaced
graphene with in-plane displacements depicted with arrows and
out-of-plane displacements shown in the background color map.

4.8.1 Integrating out Delta

Our free energy expansion has lots of terms involving the difference embedding

∆. Experimental measures of the elastic constants of graphene do not probe

these directly. The ∆ field corresponds to optical modes of vibration of our unit

cells, these characteristically have higher frequencies, and when bulk measure-

ments are done on graphene sheets the constants reported are effective elastic

constants after the unit cells themselves have relaxed. These relaxed elastic con-

stants multiply precisely the terms we calculate that do not explicitly involve

∆.
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In terms of the complete free energy functional, these effective constants are

the ones that remain once we’ve set ∆ to its minimum. These corrections to

nonlinear elastic constants will presumably only involve terms in ∆ of lower

order. A perturbative calculation of the relaxed constants explicitly in term of

ours should be possible, if complex. The complexity could be minimized by

noting that each term in such a formula must transform under our symmetry

group with the representation corresponding to ∆I .

To the lowest order, taking a variation of our free energy with respect to ∆

we obtain

α3∆
I ∼ −α2Ti jkF I

i ε jk , (4.139)

which suggests, to lowest order, our minimum ∆ should be

∆I ∼ −
α2

α3
Ti jkF I

i ε jk . (4.140)

In fact, we have already used this assumption when deciding which terms to

keep in the free energy expansion; the above result giving us an estimate for

the magnitude of the ∆ field once the unit cells have relaxed. An open question

is the details of how this result is modified when considering the higher order

terms in the free energy and whether more progress can be made in determin-

ing the true effective elastic constants of our theory in order to compare with

experiment.

One can of course numerically measure the relaxed elastic constants directly

[51], with perhaps substantially less numerical effort. As such we forgo this

analysis here.
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4.8.2 Exploring other Materials

In some ways, while graphene is a perfect candidate for this kind of non-linear

elastic theory with gradient terms, given its 2D nature and inherent strength, the

analysis is greatly complicated by the fact that graphene does not form a Bravais

lattice. Nonlinear elastic theories for traditional 3D Bravais lattices (e.g. fcc, bcc)

should be simpler, since there would be only a single embedding function (Y),

i.e. no ∆ field.

4.8.3 Exploring other potentials

Since the free energy expansion should be complete, this approach could offer

a unique way to test the effectiveness of competing interatomic potentials. By

systematically choosing a set of optimal deformations, one could quickly and

accurately determine the nonlinear gradient elastic constants, for all candidate

simulation potentials, and for competing DFT exchange functionals. Another

way of viewing the result of these calculations would be the determination of a

handful of numbers that should govern all of the nonlinear long wavelength be-

havior of the material in question. Examining the differences between compet-

ing interatomic potentials could offer their authors a unique way to access and

check their effectiveness. Such exhaustive tests, for example, are the purview of

the OpenKIM.org project [23, 101, 102].
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4.8.4 Phonons

The resulting free energy and its constants, once determined would allow us to

estimate the phonon spectrum for any material we’d like. The gradient terms in

particular are necessary to estimate the anharmonic nature of the phonon spec-

trums observed in most materials. Higher order terms would predict nonlinear

phonon scattering and mixing – with immediate application to the quality fac-

tor of nanotube [90] and nanomembrane resonators, and potential applications

to nonlinear waves [?] along nanotubes.

4.8.5 Nanotubes and Buckyballs

Besides intrinsically flat sheets, by modelling nanotubes as graphene with strain

gradients, the elastic constants in this theory should provide accurate measure-

ments for the 1D elasticity of nanotubes. Buckyballs (Buckminster-Fullerine),

however, possesses topological defects (5-fold rings) that would demand an ex-

tension of the theory presented here. Being nonlinear, we have hopes of even

seeing soliton like solutions for modes propagating down a nanotube.

4.8.6 Quantum Mechanics

Even though this theory is intrinsically classical in nature, we have hopes of ex-

amining the quantum limits of these free energies. By discretizing the modes,

we should be able to build an effective semiclassical theory of graphene sheets.

How this would change the results is an interesting question worth considera-

tion.
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4.8.7 Finite Temperature

All of our discussion thus far has been restricted to zero temperature behavior.

In principle, the finite temperature behavior of graphene is well determined by

this energy functional, where the calculations proceed in the ensemble gener-

ated by the free energy

Z =
∑
states

exp (−βF ) (4.141)

However, the effective finite-temperature elastic constants are strongly renor-

malized by the thermal fluctuations [71, 47]: a thermally rumpled sheet is far

harder to bend, and far easier to stretch than a flat sheet. This indeed leads to

effective finite-temperature elastic moduli that are length-scale dependent.

The nonlinear elastic theory presented here will of course still control the

behavior for small samples under tension, for nanotubes, and for very low tem-

peratures. IT could also be used as an initial condition for a renormalization-

group flow calculation, providing a quantitative elastic theory for all lengths

microscopic to macroscopic, whether this last calculation is practical remains an

open question.

4.9 Conclusion

We’ve outlined the initial work on a fruitful way of approaching nonlinear elas-

tic descriptions of materials such as graphene. In general, working directly with

the deformation gradient allows a direct, effective use of group theory, building

a systematic expansion of the free energy. This expansion then can be used to

help characterize different interatomic potentials, or materials themselves.
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APPENDIX A

DETAILS OF C99 REPRESENTATION

This set of experiments compare to the results reported in [14]. We implemented

our own version of the C99 algorithm (oC99) and tested it on the Choi dataset.

We explored the effect of various changes to the representation part of the algo-

rithm, namely the effects of removing stop words, cutting small sentence sizes,

stemming the words, and performing the rank transformation on the cosine

similarity matrix. For stemming, the implementation of the Porter stemming

algorithm from nltk was used. For stopwords, we used the list distributed

with the C99 code augmented by a list of punctuation marks. The results are

summarized in Table A.1.

While we reproduce the results reported in [15] without the rank transfor-

mation (C99 in table A.1), our results for the rank transformed results (last two

lines for oC99) show better performance without stemming. This is likely due

to particulars relating to details of the text transformations, such at the precise

stemming algorithm and the stopword list. We attempted to match the choices

made in [15] as much as possible, but still showed some deviations.

Perhaps the most telling deviation is the 1.5% swing in results for the last

two rows, whose only difference was a change in the tie breaking behavior of

the algorithm. In our best result, we minimized the objective at each stage, so in

the case of ties would break at the earlier place in the text, whereas for the TBR

row, we maximized the negative of the objective, so in the case of ties would

break on the rightmost equal value.
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These relatively large swings in the performance on the Choi dataset sug-

gest that it is most appropriate to compare differences in parameter settings for

a particular implementation of an algorithm. Comparing results between dif-

ferent articles to assess performance improvements due to algorithmic changes

hence requires careful attention to the implemention details.
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note cut stop stem rank Pk (%) WD (%)
C99 [15] 0 T F 0 23 -

0 T F 11 13 -
0 T T 11 12 -

oC99 0 T F 0 22.52 22.52
0 T F 11 16.69 16.72
0 T T 11 17.90 19.96

Reps 0 F F 0 32.26 32.28
5 F F 0 32.73 32.76
0 T F 0 22.52 22.52
0 F T 0 32.26 32.28
0 T T 0 23.33 23.33
5 T T 0 23.56 23.59
5 T T 3 18.17 18.30
5 T T 5 17.44 17.56
5 T T 7 16.95 17.05
5 T T 9 17.12 17.20
5 T T 11 17.07 17.14
5 T T 13 17.11 17.19

TBR 5 T F 11 17.04 17.12
Best 5 T F 11 15.56 15.64

Table A.1: Effects of text representation on the performance of the C99 algo-
rithm. The cut column denotes the cutoff for the length of a sentence
after preprocessing. The stop column denotes whether stop words
and punctuation are removed. The stem column denotes whether
the words are passed through the Porter stemming algorithm. The
rank column denotes the size of the kernel for the ranking transfor-
mation. Evaluations are given both as the Pk metric and the Window
Diff (WD) score. All experiments are done on the 400 test documents
in the 3–11 set of the Choi dataset. The upper section cites results
contained in the CWM 2000 paper [15]. The second section is an at-
tempt to match these results with our implementation (oC99). The
third section attempts to give an overview of the effect of different
parameter choices for the representation step of the algorithm. The
last section reports our best observed result as well as a run (TBR)
with the same parameter settings, but with a tie-breaking strategy
that takes right-most rather then left-most equal value.
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APPENDIX B

OVERFITTING THE CHOI DATASET

Recall from sec. 2.4.2 that each sample document in the Choi dataset is com-

posed of 10 segments, and each such segment is the first n sentences from one

of a 124 document subset of the Brown corpus (the ca**.pos and cj**.pos

sets). This means that each of the four Choi test sets (n = 3-5, 6-8, 9-11, 3-11)

necessarily contains multiple repetitions of each sentence. In the 3-5 Choi set,

for example, there are 3986 sentences, but only 608 unique sentences, so that

each sentence appears on average 6.6 times. In the 3-11 set, with 400 sample

documents, there are 28,145 sentences, but only 1353 unique sentences, for an

average of 20.8 appearances for each sentence. Furthermore, in all cases there

are only 124 unique sentences that can begin a new segment. This redundancy

means that a trained method such as LDA will see most or all of the test data

during training, and can easily overfit to the observed segmentation boundaries,

especially when the number of topics is not much smaller than the number of

documents. For example, using standard 10-fold cross validation on an algo-

rithm that simply identifies a segment boundary any time it sees a sentence in

the test set that was seen to have begun a document in the training set, gives

better than 99.9% accuracy in segmenting all four parts of the Choi dataset. For

this reason, we have not compared to the topic-modeling based segmentation

results in Tables 2.1 and 2.3.
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