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Abstract
Estimating and optimizing Mutual Informa-
tion (MI) is core to many problems in machine
learning; however, bounding MI in high dimen-
sions is challenging. To establish tractable and
scalable objectives, recent work has turned to vari-
ational bounds parameterized by neural networks,
but the relationships and tradeoffs between these
bounds remains unclear. In this work, we unify
these recent developments in a single framework.
We find that the existing variational lower bounds
degrade when the MI is large, exhibiting either
high bias or high variance. To address this prob-
lem, we introduce a continuum of lower bounds
that encompasses previous bounds and flexibly
trades off bias and variance. On high-dimensional,
controlled problems, we empirically characterize
the bias and variance of the bounds and their gradi-
ents and demonstrate the effectiveness of our new
bounds for estimation and representation learning.

1. Introduction
Estimating the relationship between pairs of variables is a
fundamental problem in science and engineering. Quan-
tifying the degree of the relationship requires a metric
that captures a notion of dependency. Here, we focus
on mutual information (MI), denoted I(X;Y ), which is
a reparameterization-invariant measure of dependency:

I(X;Y ) = Ep(x,y)
[
log

p(x|y)
p(x)

]
= Ep(x,y)

[
log

p(y|x)
p(y)

]
.

Mutual information estimators are used in computational
neuroscience (Palmer et al., 2015), Bayesian optimal exper-
imental design (Ryan et al., 2016; Foster et al., 2018), un-
derstanding neural networks (Tishby et al., 2000; Tishby &
Zaslavsky, 2015; Gabrié et al., 2018), and more. In practice,
estimating MI is challenging as we typically have access to
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Figure 1. Schematic of variational bounds of mutual information
presented in this paper. Nodes are colored based on their tractabil-
ity for estimation and optimization: green bounds can be used
for both, yellow for optimization but not estimation, and red for
neither. Children are derived from their parents by introducing
new approximations or assumptions.

samples but not the underlying distributions (Paninski, 2003;
McAllester & Stratos, 2018). Existing sample-based esti-
mators are brittle, with the hyperparameters of the estimator
impacting the scientific conclusions (Saxe et al., 2018).

Beyond estimation, many methods use upper bounds on
MI to limit the capacity or contents of representations. For
example in the information bottleneck method (Tishby et al.,
2000; Alemi et al., 2016), the representation is optimized to
solve a downstream task while being constrained to contain
as little information as possible about the input. These
techniques have proven useful in a variety of domains, from
restricting the capacity of discriminators in GANs (Peng
et al., 2018) to preventing representations from containing
information about protected attributes (Moyer et al., 2018).

Lastly, there are a growing set of methods in representation
learning that maximize the mutual information between a
learned representation and an aspect of the data. Specif-
ically, given samples from a data distribution, x ∼ p(x),
the goal is to learn a stochastic representation of the data
pθ(y|x) that has maximal MI with X subject to constraints
on the mapping (e.g. Bell & Sejnowski, 1995; Krause et al.,
2010; Hu et al., 2017; van den Oord et al., 2018; Hjelm
et al., 2018; Alemi et al., 2017). To maximize MI, we can
compute gradients of a lower bound on MI with respect to
the parameters θ of the stochastic encoder pθ(y|x), which
may not require directly estimating MI.
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While many parametric and non-parametric (Nemenman
et al., 2004; Kraskov et al., 2004; Reshef et al., 2011; Gao
et al., 2015) techniques have been proposed to address MI
estimation and optimization problems, few of them scale
up to the dataset size and dimensionality encountered in
modern machine learning problems.

To overcome these scaling difficulties, recent work com-
bines variational bounds (Blei et al., 2017; Donsker & Varad-
han, 1983; Barber & Agakov, 2003; Nguyen et al., 2010;
Foster et al., 2018) with deep learning (Alemi et al., 2016;
2017; van den Oord et al., 2018; Hjelm et al., 2018; Belghazi
et al., 2018) to enable differentiable and tractable estima-
tion of mutual information. These papers introduce flexible
parametric distributions or critics parameterized by neural
networks that are used to approximate unkown densities
(p(y), p(y|x)) or density ratios (p(x|y)p(x) = p(y|x)

p(y) ).

In spite of their effectiveness, the properties of existing
variational estimators of MI are not well understood. In this
paper, we introduce several results that begin to demystify
these approaches and present novel bounds with improved
properties (see Fig. 1 for a schematic):

• We provide a review of existing estimators, discussing
their relationships and tradeoffs, including the first
proof that the noise contrastive loss in van den Oord
et al. (2018) is a lower bound on MI, and that the
heuristic “bias corrected gradients” in Belghazi et al.
(2018) can be justified as unbiased estimates of the
gradients of a different lower bound on MI.

• We derive a new continuum of multi-sample lower
bounds that can flexibly trade off bias and variance,
generalizing the bounds of (Nguyen et al., 2010;
van den Oord et al., 2018).

• We show how to leverage known conditional structure
yielding simple lower and upper bounds that sandwich
MI in the representation learning context when pθ(y|x)
is tractable.

• We systematically evaluate the bias and variance of
MI estimators and their gradients on controlled high-
dimensional problems.

• We demonstrate the utility of our variational upper and
lower bounds in the context of decoder-free disentan-
gled representation learning on dSprites (Matthey et al.,
2017).

2. Variational bounds of MI
Here, we review existing variational bounds on MI in a
unified framework, and present several new bounds that
trade off bias and variance and naturally leverage known

conditional densities when they are available. A schematic
of the bounds we consider is presented in Fig. 1. We begin
by reviewing the classic upper and lower bounds of Bar-
ber & Agakov (2003) and then show how to derive the
lower bounds of Donsker & Varadhan (1983); Nguyen
et al. (2010); Belghazi et al. (2018) from an unnormal-
ized variational distribution. Generalizing the unnormalized
bounds to the multi-sample setting yields the bound pro-
posed in van den Oord et al. (2018), and provides the basis
for our interpolated bound.

2.1. Normalized upper and lower bounds

Upper bounding MI is challenging, but is possible when the
conditional distribution p(y|x) is known (e.g. in deep repre-
sentation learning where y is the stochastic representation).
We can build a tractable variational upper bound by intro-
ducing a variational approximation q(y) to the intractable
marginal p(y) =

∫
dx p(x)p(y|x). By multiplying and di-

viding the integrand in MI by q(y) and dropping a negative
KL term, we get a tractable variational upper bound (Barber
& Agakov, 2003):

I(X;Y ) ≡ Ep(x,y)
[
log

p(y|x)
p(y)

]
= Ep(x,y)

[
log

p(y|x)q(y)
q(y)p(y)

]
= Ep(x,y)

[
log

p(y|x)
q(y)

]
−KL(p(y)‖q(y))

≤ Ep(x) [KL(p(y|x)‖q(y))] , R, (1)

which is often referred to as the rate in generative models
(Alemi et al., 2017). This bound is tight when q(y) =
p(y), and requires that computing log q(y) is tractable. This
variational upper bound is often used as a regularizer to limit
the capacity of a stochastic representation (e.g. Rezende
et al., 2014; Kingma & Welling, 2013; Burgess et al., 2018).
In Alemi et al. (2016), this upper bound is used to prevent
the representation from carrying information about the input
that is irrelevant for the downstream classification task.

Unlike the upper bound, most variational lower bounds on
mutual information do not require direct knowledge of any
conditional densities. To establish an initial lower bound
on mutual information, we factor MI the opposite direction
as the upper bound, and replace the intractable conditional
distribution p(x|y) with a tractable optimization problem
over a variational distribution q(x|y). As shown in Barber
& Agakov (2003), this yields a lower bound on MI due to
the non-negativity of the KL divergence:

I(X;Y ) = Ep(x,y)
[
log

q(x|y)
p(x)

]
+ Ep(y) [KL(p(x|y)||q(x|y))]

≥ Ep(x,y) [log q(x|y)] + h(X) , IBA,

(2)
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where h(X) is the differential entropy of X . The bound is
tight when q(x|y) = p(x|y), in which case the first term
equals the conditional entropy h(X|Y ).

Unfortunately, evaluating this objective is generally in-
tractable as the differential entropy of X is often unknown.
If h(X) is known, this provides a tractable estimate of a
lower bound on MI. Otherwise, one can still compare the
amount of information different variables (e.g., Y1 and Y2)
carry about X .

In the representation learning context where X is data and
Y is a learned stochastic representation, the first term of
IBA can be thought of as negative reconstruction error or
distortion, and the gradient of IBA with respect to the “en-
coder” p(y|x) and variational “decoder” q(x|y) is tractable.
Thus we can use this objective to learn an encoder p(y|x)
that maximizes I(X;Y ) as in Alemi et al. (2017). However,
this approach to representation learning requires building
a tractable decoder q(x|y), which is challenging when X
is high-dimensional and h(X|Y ) is large, for example in
video representation learning (van den Oord et al., 2016).

2.2. Unnormalized lower bounds

To derive tractable lower bounds that do not require a
tractable decoder, we turn to unnormalized distributions for
the variational family of q(x|y), and show how this recovers
the estimators of Donsker & Varadhan (1983); Nguyen et al.
(2010).

We choose an energy-based variational family that uses a
critic f(x, y) and is scaled by the data density p(x):

q(x|y) = p(x)

Z(y)
ef(x,y), where Z(y) = Ep(x)

[
ef(x,y)

]
.

(3)
Substituting this distribution into IBA (Eq. 2) gives a lower
bound on MI which we refer to as IUBA for the Unnormal-
ized version of the Barber and Agakov bound:

Ep(x,y) [f(x, y)]− Ep(y) [logZ(y)] , IUBA. (4)

This bound is tight when f(x, y) = log p(y|x)+c(y), where
c(y) is solely a function of y (and not x). Note that by
scaling q(x|y) by p(x), the intractable differential entropy
term in IBA cancels, but we are still left with an intractable
log partition function, logZ(y), that prevents evaluation or
gradient computation. If we apply Jensen’s inequality to
Ep(y) [logZ(y)], we can lower bound Eq. 4 to recover the
bound of Donsker & Varadhan (1983):

IUBA ≥ Ep(x,y) [f(x, y)]− logEp(y) [Z(y)] , IDV. (5)

However, this objective is still intractable. Applying
Jensen’s the other direction by replacing logZ(y) =
logEp(x)

[
ef(x,y)

]
with Ep(x) [f(x, y)] results in a tractable

objective, but produces an upper bound on Eq. 4 (which is it-
self a lower bound on mutual information). Thus evaluating
IDV using a Monte-Carlo approximation of the expectations
as in MINE (Belghazi et al., 2018) produces estimates that
are neither an upper or lower bound on MI. Recent work
has studied the convergence and asymptotic consistency of
such nested Monte-Carlo estimators, but does not address
the problem of building bounds that hold with finite samples
(Rainforth et al., 2018; Mathieu et al., 2018).

To form a tractable bound, we can upper bound the log parti-
tion function using the inequality: log(x) ≤ x

a + log(a)− 1
for all x, a > 0. Applying this inequality to the second term
of Eq. 4 gives: logZ(y) ≤ Z(y)

a(y) + log(a(y))− 1, which is
tight when a(y) = Z(y). This results in a Tractable Unnor-
malized version of the Barber and Agakov (TUBA) lower
bound on MI that admits unbiased estimates and gradients:

I ≥ IUBA ≥ Ep(x,y) [f(x, y)]

− Ep(y)

[
Ep(x)

[
ef(x,y)

]
a(y)

+ log(a(y))− 1

]
, ITUBA. (6)

To tighten this lower bound, we maximize with respect to the
variational parameters a(y) and f . In the InfoMax setting,
we can maximize the bound with respect to the stochastic
encoder pθ(y|x) to increase I(X;Y ). Unlike the min-max
objective of GANs, all parameters are optimized towards
the same objective.

This bound holds for any choice of a(y) > 0, with sim-
plifications recovering existing bounds. Letting a(y) be
the constant e recovers the bound of Nguyen, Wainwright,
and Jordan (Nguyen et al., 2010) also known as f -GAN
KL (Nowozin et al., 2016) and MINE-f (Belghazi et al.,
2018)1:

Ep(x,y) [f(x, y)]− e−1Ep(y) [Z(y)] , INWJ. (7)

This tractable bound no longer requires learning a(y), but
now f(x, y) must learn to self-normalize, yielding a unique
optimal critic f∗(x, y) = 1 + log p(x|y)

p(x) . This requirement
of self-normalization is a common choice when learning
log-linear models and empirically has been shown not to
negatively impact performance (Mnih & Teh, 2012).

Finally, we can set a(y) to be the scalar exponential moving
average (EMA) of ef(x,y) across minibatches. This pushes
the normalization constant to be independent of y, but it
no longer has to exactly self-normalize. With this choice
of a(y), the gradients of ITUBA exactly yield the “improved
MINE gradient estimator” from (Belghazi et al., 2018). This
provides sound justification for the heuristic optimization

1ITUBA can also be derived the opposite direction by plugging
the critic f ′(x, y) = f(x, y)− log a(y) + 1 into INWJ.
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procedure proposed by Belghazi et al. (2018). However,
instead of using the critic in the IDV bound to get an estimate
that is not a bound on MI as in Belghazi et al. (2018), one
can compute an estimate with ITUBA which results in a valid
lower bound.

To summarize, these unnormalized bounds are attractive
because they provide tractable estimators which become
tight with the optimal critic. However, in practice they
exhibit high variance due to their reliance on high variance
upper bounds on the log partition function.

2.3. Multi-sample unnormalized lower bounds

To reduce variance, we extend the unnormalized bounds
to depend on multiple samples, and show how to re-
cover the low-variance but high-bias MI estimator proposed
by van den Oord et al. (2018).

Our goal is to estimate I(X1, Y ) given samples from
p(x1)p(y|x1) and access to K − 1 additional samples
x2:K ∼ rK−1(x2:K) (potentially from a different distri-
bution than X1). For any random variable Z independent
from X and Y , I(X,Z;Y ) = I(X;Y ), therefore:

I(X1;Y ) = ErK−1(x2:K) [I(X1;Y )] = I (X1, X2:K ;Y )

This multi-sample mutual information can be estimated us-
ing any of the previous bounds, and has the same optimal
critic as for I(X1;Y ). For INWJ, we have that the optimal
critic is f∗(x1:K , y) = 1 + log p(y|x1:K)

p(y) = 1 + log p(y|x1)
p(y) .

However, the critic can now also depend on the addi-
tional samples x2:K . In particular, setting the critic to
1 + log ef(x1,y)

a(y;x1:K) and rK−1(x2:K) =
∏K
j=2 p(xj), INWJ

becomes:

I(X1;Y ) ≥ 1 + Ep(x1:K)p(y|x1)

[
log

ef(x1,y)

a(y;x1:K)

]
− Ep(x1:K)p(y)

[
ef(x1,y)

a(y;x1:K)

]
, (8)

where we have written the critic using parameters a(y;x1:K)
to highlight the close connection to the variational parame-
ters in ITUBA. One way to leverage these additional samples
from p(x) is to build a Monte-Carlo estimate of the partition
function Z(y):

a(y;x1:K) = m(y;x1:K) =
1

K

K∑
i=1

ef(xi,y).

Intriguingly, with this choice, the high-variance term in INWJ
that estimates an upper bound on logZ(y) is now upper
bounded by logK as ef(x1,y) appears in the numerator and
also in the denominator (scaled by 1

K ). If we average the
bound over K replicates, reindexing x1 as xi for each term,

then the last term in Eq. 8 becomes the constant 1:

Ep(x1:K)p(y)

[
ef(x1,y)

m(y;x1:K)

]
=

1

K

K∑
i=1

E
[

ef(xi,y)

m(y;x1:K)

]

= Ep(x1:K)p(y)

[
1
K

∑K
i=1 e

f(xi,y)

m(y;x1:K)

]
= 1, (9)

and we exactly recover the lower bound on MI proposed
by van den Oord et al. (2018):

I(X;Y ) ≥ E

[
1

K

K∑
i=1

log
ef(xi,yi)

1
K

∑K
j=1 e

f(xi,yj)

]
, INCE,

(10)

where the expectation is over K independent samples from
the joint distribution:

∏
j p(xj , yj). This provides a proof2

that INCE is a lower bound on MI. Unlike INWJ where
the optimal critic depends on both the conditional and
marginal densities, the optimal critic for INCE is f(x, y) =
log p(y|x) + c(y) where c(y) is any function that depends
on y but not x (Ma & Collins, 2018). Thus the critic only
has to learn the conditional density and not the marginal
density p(y).

As pointed out in van den Oord et al. (2018), INCE is upper
bounded by logK, meaning that this bound will be loose
when I(X;Y ) > logK. Although the optimal critic does
not depend on the batch size and can be fit with a smaller
mini-batches, accurately estimating mutual information still
needs a large batch size at test time if the mutual information
is high.

2.4. Nonlinearly interpolated lower bounds

The multi-sample perspective on INWJ allows us to make
other choices for the functional form of the critic. Here we
propose one simple form for a critic that allows us to nonlin-
early interpolate between INWJ and INCE, effectively bridg-
ing the gap between the low-bias, high-variance INWJ estima-
tor and the high-bias, low-variance INCE estimator. Similarly
to Eq. 8, we set the critic to 1 + log ef(x1,y)

αm(y;x1:K)+(1−α)q(y)
with α ∈ [0, 1] to get a continuum of lower bounds:

1 + Ep(x1:K)p(y|x1)

[
log

ef(x1,y)

αm(y;x1:K) + (1− α)q(y)

]
− Ep(x1:K)p(y)

[
ef(x1,y)

αm(y;x1:K) + (1− α)q(y)

]
, Iα.

(11)

By interpolating between q(y) and m(y;x1:K), we can re-
cover INWJ (α = 0) or INCE (α = 1). Unlike INCE which is

2The derivation by van den Oord et al. (2018) relied on an
approximation, which we show is unnecessary.
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upper bounded by logK, the interpolated bound is upper
bounded by log K

α , allowing us to use α to tune the tradeoff
between bias and variance. We can maximize this lower
bound in terms of q(y) and f . Note that unlike INCE, for
α > 0 the last term does not vanish and we must sample
y ∼ p(y) independently from x1:K to form a Monte Carlo
approximation for that term. In practice we use a leave-one-
out estimate, holding out an element from the minibatch for
the independent y ∼ p(y) in the second term. We conjecture
that the optimal critic for the interpolated bound is achieved
when f(x, y) = log p(y|x) and q(y) = p(y) and use this
choice when evaluating the accuracy of the estimates and
gradients of Iα with optimal critics.

2.5. Structured bounds with tractable encoders

In the previous sections we presented one variational upper
bound and several variational lower bounds. While these
bounds are flexible and can make use of any architecture or
parameterization for the variational families, we can addi-
tionally take into account known problem structure. Here
we present several special cases of the previous bounds that
can be leveraged when the conditional distribution p(y|x)
is known. This case is common in representation learning
where x is data and y is a learned stochastic representation.

InfoNCE with a tractable conditional.
An optimal critic for INCE is given by f(x, y) = log p(y|x),
so we can simply use the p(y|x) when it is known. This
gives us a lower bound on MI without additional variational
parameters:

I(X;Y ) ≥ E

[
1

K

K∑
i=1

log
p(yi|xi)

1
K

∑K
j=1 p(yi|xj)

]
, (12)

where the expectation is over
∏
j p(xj , yj).

Leave one out upper bound.
Recall that the variational upper bound (Eq. 1) is mini-
mized when our variational q(y) matches the true marginal
distribution p(y) =

∫
dx p(x)p(y|x). Given a mini-

batch of K (xi, yi) pairs, we can approximate p(y) ≈
1
K

∑
i p(y|xi) (Chen et al., 2018). For each example xi

in the minibatch, we can approximate p(y) with the mixture
over all other elements: qi(y) = 1

K−1
∑
j 6=i p(y|xj). With

this choice of variational distribution, the variational upper
bound is:

I(X;Y ) ≤ E

[
1

K

K∑
i=1

[
log

p(yi|xi)
1

K−1
∑
j 6=i p(yi|xj)

]]
(13)

where the expectation is over
∏
i p(xi, yi). Combining

Eq. 12 and Eq. 13, we can sandwich MI without intro-
ducing learned variational distributions. Note that the only
difference between these bounds is whether p(yi|xi) is in-
cluded in the denominator. Similar mixture distributions

have been used in prior work but they require additional
parameters (Tomczak & Welling, 2018; Kolchinsky et al.,
2017).

Reparameterizing critics.
For INWJ, the optimal critic is given by 1 + log p(y|x)

p(y) , so it

is possible to use a critic f(x, y) = 1 + log p(y|x)
q(y) and opti-

mize only over q(y) when p(y|x) is known. The resulting
bound resembles the variational upper bound (Eq. 1) with a
correction term to make it a lower bound:

I ≥ Ep(x,y)
[
log

p(y|x)
q(y)

]
− Ep(y)

[Ep(x) [p(y|x)]
q(y)

]
+ 1

= R+ 1− Ep(y)
[Ep(x) [p(y|x)]

q(y)

]
(14)

This bound is valid for any choice of q(y), including unnor-
malized q.

Similarly, for the interpolated bounds we can use f(x, y) =
log p(y|x) and only optimize over the q(y) in the denom-
inator. In practice, we find reparameterizing the critic to
be beneficial as the critic no longer needs to learn the map-
ping between x and y, and instead only has to learn an ap-
proximate marginal q(y) in the typically lower-dimensional
representation space.

Upper bounding total correlation.
Minimizing statistical dependency in representations is a
common goal in disentangled representation learning. Prior
work has focused on two approaches that both minimize
lower bounds: (1) using adversarial learning (Kim & Mnih,
2018; Hjelm et al., 2018), or (2) using minibatch approxima-
tions where again a lower bound is minimized (Chen et al.,
2018). To measure and minimize statistical dependency,
we would like an upper bound, not a lower bound. In the
case of a mean field encoder p(y|x) =

∏
i p(yi|x), we can

factor the total correlation into two information terms, and
form a tractable upper bound. First, we can write the total
correlation as: TC(Y ) =

∑
i I(X;Yi)− I(X;Y ). We can

then use either the standard (Eq. 1) or the leave one out
upper bound (Eq. 13) for each term in the summation, and
any of the lower bounds for I(X;Y ). If I(X;Y ) is small,
we can use the leave one out upper bound (Eq. 13) and INCE
(Eq. 12) for the lower bound and get a tractable upper bound
on total correlation without any variational distributions or
critics. Broadly, we can convert lower bounds on mutual
information into upper bounds on KL divergences when the
conditional distribution is tractable.

2.6. From density ratio estimators to bounds

Note that the optimal critic for both INWJ and INCE are
functions of the log density ratio log p(y|x)

p(y) . So, given a log
density ratio estimator, we can estimate the optimal critic
and form a lower bound on MI. In practice, we find that
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Figure 2. Performance of bounds at estimating mutual information. Top: The dataset p(x, y; ρ) is a correlated Gaussian with the
correlation ρ stepping over time. Bottom: the dataset is created by drawing x, y ∼ p(x, y; ρ) and then transforming y to get (Wy)3

where Wij ∼ N (0, 1) and the cubing is elementwise. Critics are trained to maximize each lower bound on MI, and the objective (light)
and smoothed objective (dark) are plotted for each technique and critic type. The single-sample bounds (INWJ and IJS) have higher
variance than INCE and Iα, but achieve competitive estimates on both datasets. While INCE is a poor estimator of MI with the small training
batch size of 64, the interpolated bounds are able to provide less biased estimates than INCE with less variance than INWJ. For the more
challenging nonlinear relationship in the bottom set of panels, the best estimates of MI are with α = 0.01. Using a joint critic (orange)
outperforms a separable critic (blue) for INWJ and IJS, while the multi-sample bounds are more robust to the choice of critic architecture.

training a critic using the Jensen-Shannon divergence (as
in Nowozin et al. (2016); Hjelm et al. (2018)), yields an
estimate of the log density ratio that is lower variance and
as accurate as training with INWJ. Empirically we find that
training the critic using gradients of INWJ can be unstable
due to the exp from the upper bound on the log partition
function in the INWJ objective. Instead, one can train a log
density ratio estimator to maximize a lower bound on the
Jensen-Shannon (JS) divergence, and use the density ratio
estimate in INWJ (see Appendix D for details). We call
this approach IJS as we update the critic using the JS as
in (Hjelm et al., 2018), but still compute a MI lower bound
with INWJ. This approach is similar to (Poole et al., 2016;
Mescheder et al., 2017) but results in a bound instead of an
unbounded estimate based on a Monte-Carlo approximation
of the f -divergence.

3. Experiments
First, we evaluate the performance of MI bounds on two
simple tractable toy problems. Then, we conduct a more
thorough analysis of the bias/variance tradeoffs in MI esti-
mates and gradient estimates given the optimal critic. Our
goal in these experiments was to verify the theoretical re-
sults in Section 2, and show that the interpolated bounds
can achieve better estimates of MI when the relationship
between the variables is nonlinear. Finally, we highlight
the utility of these bounds for disentangled representation
learning on the dSprites datasets.

Comparing estimates across different lower bounds.
We applied our estimators to two different toy problems, (1)
a correlated Gaussian problem taken from Belghazi et al.
(2018) where (x, y) are drawn from a 20-d Gaussian distri-
bution with correlation ρ (see Appendix B for details), and
we vary ρ over time, and (2) the same as in (1) but we apply
a random linear transformation followed by a cubic nonlin-
earity to y to get samples (x, (Wy)3). As long as the linear
transformation is full rank, I(X;Y ) = I(X; (WY )3). We
find that the single-sample unnormalized critic estimates
of MI exhibit high variance, and are challenging to tune
for even these problems. In congtrast, the multi-sample
estimates of INCE are low variance, but have estimates that
saturate at log(batch size). The interpolated bounds trade
off bias for variance, and achieve the best estimates of MI
for the second problem. None of the estimators exhibit low
variance and good estimates of MI at high rates, supporting
the theoretical findings of McAllester & Stratos (2018).

Efficiency-accuracy tradeoffs for critic architectures.
One major difference between the critic architectures used
in (van den Oord et al., 2018) and (Belghazi et al., 2018) is
the structure of the critic architecture. van den Oord et al.
(2018) uses a separable critic f(x, y) = h(x)T g(y) which
requires only 2N forward passes through a neural network
for a batch size of N . However, Belghazi et al. (2018) use
a joint critic, where x, y are concatenated and fed as in-
put to one network, thus requiring N2 forward passes. For
both toy problems, we found that separable critics (orange)
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Figure 3. Bias and variance of MI estimates with the optimal
critic. While INWJ is unbiased when given the optimal critic, INCE

can exhibit large bias that grows linearly with MI. The Iα bounds
trade off bias and variance to recover more accurate bounds in
terms of MSE in certain regimes.

increased the variance of the estimator and generally per-
formed worse than joint critics (blue) when using INWJ or
IJS (Fig. 2). However, joint critics scale poorly with batch
size, and it is possible that separable critics require larger
neural networks to get similar performance.

Bias-variance tradeoff for optimal critics.
To better understand the behavior of different estimators,
we analyzed the bias and variance of each estimator as a
function of batch size given the optimal critic (Fig. 3). We
again evaluated the estimators on the 20-d correlated Gaus-
sian distribution and varied ρ to achieve different values of
MI. While INWJ is an unbiased estimator of MI, it exhibits
high variance when the MI is large and the batch size is
small. As noted in van den Oord et al. (2018), the INCE
estimate is upper bounded by log(batch size). This results
in high bias but low variance when the batch size is small
and the MI is large. In this regime, the absolute value of the
bias grows linearly with MI because the objective saturates
to a constant while the MI continues to grow linearly. In
contrast, the Iα bounds are less biased than INCE and lower
variance than INWJ, resulting in a mean squared error (MSE)
that can be smaller than either INWJ or INCE. We can also
see that the leave one out upper bound (Eq. 13) has large
bias and variance when the batch size is too small.

Bias-variance tradeoffs for representation learning.
To better understand whether the bias and variance of the
estimated MI impact representation learning, we looked
at the accuracy of the gradients of the estimates with re-
spect to a stochastic encoder p(y|x) versus the true gradient
of MI with respect to the encoder. In order to have ac-
cess to ground truth gradients, we restrict our model to
pρ(yi|xi) = N (ρix,

√
1− ρ2i ) where we have a separate

Figure 4. Gradient accuracy of MI estimators. Left: MSE be-
tween the true encoder gradients and approximate gradients as a
function of mutual information and batch size (colors the same as
in Fig. 3 ). Right: For each mutual information and batch size, we
evaluated the Iα bound with different αs and found the α that had
the smallest gradient MSE. For small MI and small size, INCE-like
objectives are preferred, while for large MI and large batch size,
INWJ-like objectives are preferred.

correlation parameter for each dimension i, and look at the
gradient of MI with respect to the vector of parameters ρ.
We evaluate the accuracy of the gradients by computing
the MSE between the true and approximate gradients. For
different settings of the parameters ρ, we identify which
α performs best as a function of batch size and mutual in-
formation. In Fig. 4, we show that the optimal α for the
interpolated bounds depends strongly on batch size and the
true mutual information. For smaller batch sizes and MIs,
α close to 1 (INCE) is preferred, while for larger batch sizes
and MIs, α closer to 0 (INWJ) is preferred. The reduced
gradient MSE of the Iα bounds points to their utility as an
objective for training encoders in the InfoMax setting.

3.1. Decoder-free representation learning on dSprites

Many recent papers in representation learning have focused
on learning latent representations in a generative model that
correspond to human-interpretable or “disentangled” con-
cepts (Higgins et al., 2016; Burgess et al., 2018; Chen et al.,
2018; Kumar et al., 2017). While the exact definition of
disentangling remains elusive (Locatello et al., 2018; Hig-
gins et al., 2018; Mathieu et al., 2018), many papers have
focused on reducing statistical dependency between latent
variables as a proxy (Kim & Mnih, 2018; Chen et al., 2018;
Kumar et al., 2017). Here we show how a decoder-free
information maximization approach subject to smoothness
and independence constraints can retain much of the repre-
sentation learning capabilities of latent-variable generative
models on the dSprites dataset (a 2d dataset of white shapes
on a black background with varying shape, rotation, scale,
and position from Matthey et al. (2017)).

To estimate and maximize the information contained in the
representation Y about the input X , we use the IJS lower
bound, with a structured critic that leverages the known
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stochastic encoder p(y|x) but learns an unnormalized vari-
ational approximation q(y) to the prior. To encourage in-
dependence, we form an upper bound on the total correla-
tion of the representation, TC(Y ), by leveraging our novel
variational bounds. In particular, we reuse the IJS lower
bound of I(X;Y ), and use the leave one out upper bounds
(Eq. 13) for each I(X;Yi). Unlike prior work in this area
with VAEs, (Kim & Mnih, 2018; Chen et al., 2018; Hjelm
et al., 2018; Kumar et al., 2017), this approach tractably
estimates and removes statistical dependency in the repre-
sentation without resorting to adversarial techniques, mo-
ment matching, or minibatch lower bounds in the wrong
direction.

As demonstrated in Krause et al. (2010), information maxi-
mization alone is ineffective at learning useful representa-
tions from finite data. Furthermore, minimizing statistical
dependency is also insufficient, as we can always find an
invertible function that maintains the same amount of infor-
mation and correlation structure, but scrambles the repre-
sentation (Locatello et al., 2018). We can avoid these issues
by introducing additional inductive biases into the repre-
sentation learning problem. In particular, here we add a
simple smoothness regularizer that forces nearby points
in x space to be mapped to similar regions in y space:
R(θ) = KL(pθ(y|x)‖pθ(y|x+ ε)) where ε ∼ N (0, 0.5).

The resulting regularized InfoMax objective we optimize is:

maximize
p(y|x)

I(X;Y ) (15)

subject to TC(Y ) =

K∑
i=1

I(X;Yi)− I(X;Y ) ≤ δ

Ep(x)p(ε) [KL(p(y|x)‖p(y|x+ ε))] ≤ γ

We use the convolutional encoder architecture from Burgess
et al. (2018); Locatello et al. (2018) for p(y|x), and a two
hidden layer fully-connected neural network to parameterize
the unnormalized variational marginal q(y) used by IJS.

Empirically, we find that this variational regularized info-
max objective is able to learn x and y position, and scale, but
not rotation (Fig. 5, see Chen et al. (2018) for more details
on the visualization). To the best of our knowledge, the only
other decoder-free representation learning result on dSprites
is Pfau & Burgess (2018), which recovers shape and rotation
but not scale on a simplified version of the dSprites dataset
with one shape.

4. Discussion
In this work, we reviewed and presented several new bounds
on mutual information. We showed that our new interpo-
lated bounds are able to trade off bias for variance to yield
better estimates of MI. However, none of the approaches
we considered here are capable of providing low-variance,

Figure 5. Feature selectivity on dSprites. The representation
learned with our regularized InfoMax objective exhibits disen-
tangled features for position and scale, but not rotation. Each row
corresponds to a different active latent dimension. The first column
depicts the position tuning of the latent variable, where the x and y
axis correspond to x/y position, and the color corresponds to the
average activation of the latent variable in response to an input
at that position (red is high, blue is low). The scale and rotation
columns show the average value of the latent on the y axis, and the
value of the ground truth factor (scale or rotation) on the x axis.

low-bias estimates when the MI is large and the batch size is
small. Future work should identify whether such estimators
are impossible (McAllester & Stratos, 2018), or whether
certain distributional assumptions or neural network induc-
tive biases can be leveraged to build tractable estimators.
Alternatively, it may be easier to estimate gradients of MI
than estimating MI. For example, maximizing IBA is fea-
sible even though we do not have access to the constant
data entropy. There may be better approaches in this set-
ting when we do not care about MI estimation and only
care about computing gradients of MI for minimization or
maximization.

A limitation of our analysis and experiments is that they
focus on the regime where the dataset is infinite and there
is no overfitting. In this setting, we do not have to worry
about differences in MI on training vs. heldout data, nor do
we have to tackle biases of finite samples. Addressing and
understanding this regime is an important area for future
work.

Another open question is whether mutual information maxi-
mization is a more useful objective for representation learn-
ing than other unsupervised or self-supervised approaches
(Noroozi & Favaro, 2016; Doersch et al., 2015; Dosovit-
skiy et al., 2014). While deviating from mutual information
maximization loses a number of connections to informa-
tion theory, it may provide other mechanisms for learning
features that are useful for downstream tasks. In future
work, we hope to evaluate these estimators on larger-scale
representation learning tasks to address these questions.
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A. Summary of mutual information lower bounds
In Table 1, we summarize the characteristics of lower bounds on MI. The parameters and objectives used for each of these
bounds is presented in Table 2.

Lower Bound L ∇L ⊥ BS Var. Norm.
IBA Barber & Agakov (2003) 7 3 3 3 7
IDV Donsker & Varadhan (1983) 7 7 – – –
INWJ Nguyen et al. (2010) 3 3 3 7 3
IMINE Belghazi et al. (2018) 7 3 3 7 3
INCE van den Oord et al. (2018) 3 3 7 3 3
IJS Appendix D 3 3 3 7 3
Iα Eq. 11 3 3 7 3 3

Table 1. Characterization of mutual information lower bounds. Estimators can have a tractable (3) or intractable (7) objective (L),
tractable (3) or intractable (7) gradients (∇L), be dependent (7) or independent (3) of batch size (⊥ BS), have high (7) or low (3)
variance (Var.), and requires a normalized (7) vs unnormalized (3) critic (Norm.).

Lower Bound Parameters Objective
IBA q(x|y) tractable decoder Ep(x,y) [log q(x|y)− log p(x)]
IDV f(x, y) critic Ep(x,y) [log f(x, y)]− log

(
Ep(x)p(y) [f(x, y)]

)
INWJ f(x, y) Ep(x,y) [log f(x, y)]− 1

eEp(x)p(y) [f(x, y)]
IMINE f(x, y), EMA(log f) IDV for evaluation, ITUBA(f,EMA(log f)) for gradient

INCE f(x, y) EpK(x,y)

[
1
K

∑K
i=1 log

f(yi,xi)
1
K

∑K
j=1 f(yi,xj)

]
IJS f(x, y) INWJ for evaluation, f -GAN JS for gradient

ITUBA f(x, y), a(y) > 0 Ep(x,y) [log f(x, y)]− Ep(y)
[
Ep(x)[f(x,y)]

a(y) + log(a(y))− 1
]

ITNCE e(y|x) tractable encocder INCE with f(x, y) = e(y|x)
Iα f(x, y), α, q(y) 1 + Ep(x1:K ,y)

[
log ef(x1,y)

αm(y;x1:K)+(1−α)q(y)

]
−Ep(x1:K)p(y)

[
ef(x1,y)

αm(y;x1:K)+(1−α)q(y)

]
Table 2. Parameters and objectives for mutual information estimators.

B. Experimental details
Dataset. For each dimension, we sampled (xi, yi) from a correlated Gaussian with mean 0 and correlation of ρ. We used
a dimensionality of 20, i.e. x ∈ R20, y ∈ R20. Given the correlation coefficient ρ, and dimensionality d = 20, we can
compute the true mutual information: I(x, y) = −d2 log(1 − ρ

2). For Fig. 2, we increase ρ over time to show how the
estimator behavior depends on the true mutual information.

Architectures. We experimented with two forms of architecture: separable and joint. Separable architectures independently
mapped x and y to an embedding space and then took the inner product, i.e. f(x, y) = h(x)T g(y) as in (van den Oord et al.,
2018). Joint critics concatenate each x, y pair before feeding it into the network, i.e. f(x, y) = h([x, y]) as in (Belghazi
et al., 2018). In practice, separable critics are much more efficient as we only have to perform 2N forward passes through
neural networks for a batch size of N vs. N2 for joint critics. All networks were fully-connected networks with ReLU
activations.
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Mutual Information
2.0 4.0 6.0 8.0 10.0

Gaussian, unstructured
Iα 1.9 3.8 5.7 7.4 8.9

INCE 1.9 3.6 4.9 5.7 6.0
IJS 1.2 3.0 4.8 6.5 8.1

INWJ 1.6 3.5 5.2 6.7 8.0

Cubic, unstructured
Iα 1.7 3.6 5.4 6.9 8.2

INCE 1.7 3.2 4.1 4.6 4.8
IJS 1.0 2.8 4.5 6.1 7.6

INWJ 1.5 3.2 4.7 5.9 6.9

Gaussian, known p(y|x)
INCE (Eq. 12) 1.9 3.3 4.2 4.6 4.8
INWJ (Eq. 14) 2.0 4.0 6.0 8.0 10.0

Table 3. Hyperparameter-optimizes results on the toy Gaussian and Cubic problem of Fig. 2.

C. Additional experiments
C.1. Exhaustive hyperparameter sweep.

To better evaluate the tradeoffs between different bounds, we performed more extensive experiments on the toy problems in
Fig. 2. For each bound, we optimized over learning rate, architecture (separable vs. joint critic, number of hidden layers
(1-3), hidden units per layer (256, 512, 1024, 2048), nonlinearity (ReLU or Tanh), and batch size (64, 128, 256, 512). In
Table 3, we present the estimate of the best-performing hyperparameters for each technique. For both the Gaussian and
Cubic problem, Iα outperforms all approaches at all levels of mutual information between X and Y . While the absolute
estimates are improved after this hyperparameter sweep, the ordering of the approaches is qualitatively the same as in Fig. 2.
We also experimented with the bounds that leverage known conditional distribution, and found that Eq. 14 that leverages a
known p(y|x) is highly accurate as it only has to learn the marginal q(y).

C.2. Effective bias-variance tradeoffs with Iα

To better understand the effectiveness of Iα at trading off bias for variance, we plotted bias vs. variance for 3 levels of
mutual information on the toy 20-dimensional Gaussian problem across a range of architecture settings. In Fig. 6, we see
that Iα is able to effectively interpolate between the high-bias low-variance INCE, and the low-bias high-variance INWJ. We
also find that IJS is competitive at high rates, but exhibits higher bias and variance than Iα at lower rates.

Figure 6. Iα effectively interpolates between INCE and INWJ, trading off bias for variance.

In addition to Iα, we compared to two alternative interpolation procedures, neither of which showed the improvements of
Iα:

1. Iα interpolation: multisample bound that uses a critic with linear interpolation between the batch mixture m(y;x1:K
and the learned marginal q(y) in the denominator (Eqn. 11).
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Figure 7. Comparing Iα to other interpolations schemes.

2. Linear interpolation: αINCE + (1− α)INWJ

3. Product interpolation: same as Iα, but uses the product m(y;x1:K)αq(y)(1−α) in the denominator.

We compared these approaches in the same setting as Fig. 6, evaluating the bias and variance for various hyperparameter
settings at three different levels of mutual information. In Fig. 7, we can see that neither the product or linear interpolation
approaches reduce the bias or variance as well as Iα.

D. IJS derivation
Given the high-variance of INWJ, optimizing the critic with this objective can be challenging. Instead, we can optimize the
critic using the lower bound on Jensen-Shannon (JS) divergence as in GANs and Hjelm et al. (2018), and use the density
ratio estimate from the JS critic to construct a critic for the KL lower bound.

The optimal critic for INWJ/f -GAN KL that saturates the lower bound on KL(p‖q) is given by (Nowozin et al., 2016):

T ∗(x) = 1 + log
p(x)

q(x)
.

If we use the f -GAN formulation for parameterizing the critic with a softplus activation, then we can read out the density
ratio from the real-valued logits V (x):

p(x)

q(x)
≈ exp (V (x))

In Poole et al. (2016); Mescheder et al. (2017), they plug in this estimate of the density ratio into a Monte-Carlo approximation
of the f -divergence. However, this is no longer a bound on the f -divergence, it is just an approximation. Instead, we can
construct a critic for the KL divergence, TKL(x) = 1 + V (x), and use that to get a lower bound using the INWJ objective:

KL(p‖q) ≥ Ex∼p [TKL(x)]− Ex∼q [exp(TKL(x)− 1)] (16)
= 1 + Ex∼p [V (x)]− Ex∼q [exp(V (x))] (17)

Note that if the log density ratio estimate V (x) is exact, i.e. V (x) = log p(x)
q(x) , then the last term, Ex∼q [exp(V (x))] will be

one, and the first term is exactly KL(p‖q).

For the special case of mutual information estimation, p is the joint p(x, y) and q is the product of marginals p(x)p(y),
yielding:

I(X;Y ) ≥ 1 + Ep(x,y) [V (x, y)]− Ep(x)p(y) [exp(V (x, y))] , IJS. (18)

E. Alternative derivation of ITNCE

In the main text, we derive INCE (and ITNCE) from a multi-sample variational lower bound. Here we present a simpler and
more direct derivation of ITNCE. Let p(x) be the data distribution, and p(x1:K) denote K samples drawn iid from p(x). Let
p(y|x) be a stochastic encoder, and p(y) be the intractable marginal p(y) =

∫
dx p(x)p(y|x). First, we can write the mutual
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information as a sum over K terms each of whose expectation is the mutual information:

I(X; y) = Ex1:K

[
1

K

K∑
i=1

KL(p(y|xi)‖p(y))

]
= Ex1:K

[
1

K

K∑
i=1

∫
dy p(y|xi) log

p(y|xi)
p(y)

]
(19)

(20)

Let m(y;x1:K) = 1
K

∑K
i=1 p(y|xi) be the minibatch estimate of the intractable marginal p(y). We multiply and divide by

m and then simplify:

I(X; y) = Ex1:K

[
1

K

K∑
i=1

∫
dy p(y|xi) log

p(y|xi)m(y;x1:K)

m(y;x1:K)p(y)

]
(21)

= Ex1:K

[
1

K

K∑
i=1

[∫
dy p(y|xi) log

p(y|xi)
m(y;x1:K)

+

∫
dy p(y|xi) log

m(y;x1:K)

p(y)

]]
(22)

= Ex1:K

[
1

K

K∑
i=1

KL(p(y|xi)‖m(y;x1:K)) +

∫
dy

1

K

K∑
i=1

p(y|xi) log
m(y;x1:K)

p(y)

]
(23)

= Ex1:K

[(
1

K

K∑
i=1

KL(p(y|xi)‖m(y;x1:K))

)
+ KL(m(y;x1:K)‖p(y))

]
(24)

≥ Ex1:K

[
1

K

K∑
i=1

KL(p(y|xi)‖m(y;x1:K))

]
(25)


